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Abstract 

Flexible and effective educational environments have been emphasized by the rapid transition to online 

learning that has been precipitated by the COVID-19 pandemic. This study suggests the development of 

an Enhanced Hybrid Explainable AI (XAI) model to forecast. The model integrates machine learning 

(ML) and deep learning (DL) techniques with ensemble methods to enhance the accuracy of the 

predictions. The model integrates bagging, boosting, and stacking techniques, as well as SHAP, LIME, 

and attention mechanisms, to ensure interpretability and transparency. The methodology entailed the 

preprocessing of an exhaustive dataset, the training of a variety of ML and DL models, and the evaluation 

of their performance using metrics such as precision, recall, and F1-score. The Random Forest model 

demonstrated the optimum performance, with precision values ranging from 0.88 to 0.93, recall from 0.85 

to 0.92, and F1-score from 0.87 to 0.92 across various adaptability categories. The results were as 

follows. These results underscore the model's dependability and robustness in predicting student 

adaptability, offering educational stakeholders actionable insights. In order to improve the model's 

applicability and effectiveness, future research should investigate the incorporation of a broader dataset, 

real-time adaptability monitoring, integration with Learning Management Systems (LMS), and 

longitudinal studies. 

Keywords: Explainable AI (XAI), Machine Learning (ML), Deep Learning (DL), SHAP, LIME, Online 

Education, Educational Data Mining, Learning Analytic. 

 

Introduction 

The critical importance of establishing educational 

environments that are both flexible and effective in 

order to accommodate the diverse requirements of 

students has been underscored by the rapid 

transition to online learning that has been 

precipitated by the COVID-19 pandemic. 

adaptability, retention, and engagement. Students 

must possess a distinctive set of skills, such as the 

ability to acclimatize to various teaching styles, 

technological proficiency, and self-regulation, in 

order to transition to online education.  

The utilization of Artificial Intelligence (AI) to 

improve educational experiences has been on the 

rise. Explainable AI (XAI) has become 

increasingly popular among the various AI 
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methodologies as a result of its capacity to 

generate models that are both transparent and 

comprehensible. This transparency is crucial in 

educational contexts, where stakeholders, 

including students and educators, must 

comprehend the decision-making processes of AI 

systems.[1] Conventional AI models often operate 

in a manner that is opaque, which undermines user 

confidence and makes it difficult to comprehend 

their predictions. In order to solve this problem 

and promote confidence and better decision-

making, XAI clarifies how models get their 

results. 

Learning analytics and educational data mining 

have been heavily utilizing ML and DL techniques 

for student outcome prediction in the past few 

years. Identifying students at risk, and customize 

learning experiences. These models frequently 

lack the requisite transparency for practical 

application in educational settings, despite their 

effectiveness.[2] In order to address this deficit, 

our research suggests the development of an 

Enhanced Hybrid Explainable AI (XAI) model that 

integrates ML and DL methodologies to forecast 

the adaptability of students in online education, 

while simultaneously guaranteeing model 

transparency and interpretability. 

Ensemble methods are incorporated into the hybrid 

model to enhance the accuracy of predictions. 

Ensemble methods, including bagging, boosting, 

and stacking, combine multiple models to improve 

predictions, reduce variance, or reduce bias. In 

educational data mining, where data can be 

heterogeneous and complex, these methods are 

particularly beneficial. The hybrid model 

endeavors to generate predictions that are more 

precise and dependable by capitalizing on the 

advantages of a variety of ML and DL techniques. 

Furthermore, it is imperative to incorporate XAI 

methodologies into the composite model in order 

to elucidate the predictions to students and 

educators. Local Interpretable Model-agnostic 

Explanations (LIME), Shapley Additive 

Explanations (SHAP), and attention mechanisms 

in neural networks are among the methods that 

assist in the deconstruction of the AI's decision-

making process.[3]  This interpretability is 

essential for the development of targeted 

interventions to support students and for the 

acquisition of insights into the factors that 

influence students' adaptability. The objective of 

the proposed research is to create and verify an 

Enhanced Hybrid XAI model that accurately 

forecasts students' adaptability to online education. 

The model will be trained and evaluated on a 

comprehensive dataset that encompasses a variety 

of features related to student demographics, 

academic performance, engagement metrics, and 

psychological attributes. The research will also 

investigate the practical implications of the 

model's predictions, providing educational 

institutions with the opportunity to enhance 

student support services by leveraging these 

predictions. This research contributes to the 

expanding field of educational data mining and 

learning analytics by addressing both prediction 

accuracy and model transparency. It provides a 

unique method for comprehending and facilitating 

student adaptability in online education, thereby 

improving educational outcomes and guaranteeing 

that no student is overlooked during the transition 

to digital learning environments. 

To place our study in perspective with previous 

work, as well as to outline the architecture and 

methodology that will support it, we undertake a 

thorough literature review in the parts that follow., 

outline the data collection and preprocessing steps, 

detail the model development process, and present 

the experimental setup. Ultimately, we will 

deliberate on the findings, emphasize the 

significance of our research, and suggest potential 

future research directions. 

Literature Review 

Jadhav and Moharekar (2023)[4] conducted a 

comprehensive review of explainable AI (XAI) in 

education, focusing on the integration of machine 

learning and deep learning technologies in 

educational settings. They employed a qualitative 

methodology, synthesizing findings from various 

studies to provide an overarching perspective on 

the current state and future directions of XAI in 
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education. The primary advantage of their 

approach is the holistic view it offers, enabling 

stakeholders to understand the broader 

implications and potential of XAI. However, a 

significant drawback is the lack of empirical data 

to validate the synthesized conclusions. The 

authors identified a research gap in the need for 

more empirical studies that assess the practical 

applications of XAI in real-world educational 

environments. Sasikala and Sachan (2023)[5] 

explored the scalability of modern machine 

learning algorithms and the application of deep 

neural networks in education through the lens of 

explainable AI. Their methodology involved a 

comparative analysis of different XAI models to 

determine their effectiveness in enhancing trust 

and transparency in decision-making processes. 

The study's advantage lies in its detailed 

comparison of models, providing clear insights 

into their respective strengths and weaknesses. 

However, the study is limited by its theoretical 

nature, with no real-world application or validation 

of the models discussed. The authors pointed out 

the need for future research to focus on the 

implementation of these models in practical 

educational settings to evaluate their effectiveness 

empirically. 

Raza et al. (2024)[6] utilized explainable AI to 

enhance virtual reality design by detecting user 

immersion levels. Their methodology included 

applying novel feature fusion techniques and deep 

learning approaches to create a more immersive 

virtual reality experience. The advantage of this 

study is its innovative approach to combining XAI 

with virtual reality, which has the potential to 

significantly improve user experience. However, 

the drawback is the complexity of the 

methodology, which may limit its replicability. The 

researchers highlighted a gap in the literature 

concerning the real-time application of these 

techniques in various educational contexts, 

suggesting that future studies should explore this 

aspect. 

Gongane and Munot (2023)[7] focused on the 

application of XAI for the reliable detection of 

cyberbullying. They employed a machine learning 

algorithm that integrates natural language 

processing (NLP) with deep neural networks to 

enhance detection accuracy. The primary 

advantage of their methodology is its ability to 

provide transparency in the decision-making 

process of the AI system. However, the study is 

constrained by its reliance on a specific dataset, 

which may not generalize well to other contexts. 

The authors identified a research gap in the need 

for more diverse datasets to improve the 

robustness and generalizability of their model. 

Zhang et al. (2024)[8] examined the auto-

classification and machine explanation of tutoring 

audio using XAI. Their methodology involved 

comparing three different XAI methods to 

determine their effectiveness in classifying and 

explaining audio data. The advantage of this study 

is its detailed comparative analysis, which 

provides valuable insights into the strengths and 

weaknesses of each method. However, a 

significant drawback is the lack of real-world 

application, as the study was conducted in a 

controlled environment. The researchers suggested 

that future studies should focus on applying these 

methods in real educational settings to validate 

their findings. John et al. (2024)[9] discussed 

various XAI approaches in the context of drug 

discovery, highlighting the collaborative efforts 

between deep learning experts and XAI 

practitioners. Their methodology involved 

reviewing existing models and proposing a 

framework for integrating XAI into drug discovery 

processes. The advantage of their approach is the 

potential to improve transparency and trust in AI-

driven drug discovery. However, the study is 

limited by its theoretical nature and lacks 

empirical validation. The authors identified a gap 

in the literature concerning the application of their 

proposed framework in practical drug discovery 

projects, suggesting this as a future research 

direction. 

Klauschen et al. (2024)[10] presented a review on 

the use of XAI in precision pathology, focusing on 

the integration of machine learning and deep 

neural networks. Their methodology included a 

detailed analysis of various XAI techniques and 
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their application in pathology. The primary 

advantage of this study is its comprehensive 

coverage of the technical aspects of XAI in a 

critical medical field. However, the drawback is 

the high level of technical detail, which may be 

inaccessible to non-experts. The authors suggested 

that future research should aim to simplify these 

techniques and make them more accessible to a 

broader audience. Weitz (2023)[11] investigated 

the impact of XAI on end-users through an 

interdisciplinary approach that combines elements 

of human-computer interaction and machine 

learning. The methodology involved user studies 

to assess the effectiveness of XAI in enhancing 

user understanding and trust. The advantage of this 

study is its focus on user-centered design, which is 

critical for the practical adoption of XAI. 

However, a significant drawback is the limited 

sample size of the user studies, which may affect 

the generalizability of the findings. The author 

highlighted the need for larger-scale studies to 

validate the results. Gelbukh et al. (2024)[12]  

reviewed the state-of-the-art in explainable 

machine learning for smart cities, exploring 

various applications ranging from healthcare to 

education. Their methodology involved a literature 

review and analysis of existing XAI models used 

in smart cities. The primary advantage of their 

approach is the broad coverage of different 

application areas, providing a comprehensive 

overview of the field. However, the study is 

limited by its theoretical nature and lack of 

empirical validation. The authors identified a 

research gap in the need for more empirical studies 

that evaluate the effectiveness of XAI models in 

real-world smart city applications. 

Sarker (2024)[13] discussed the integration of AI 

and XAI in cybersecurity, focusing on intelligent 

decision-making and explainability. The 

methodology involved a review of existing AI and 

XAI techniques and their application in 

cybersecurity. The advantage of this study is its 

focus on a critical area of technology, highlighting 

the importance of explainability in security 

systems. However, the drawback is the lack of 

practical examples and case studies. The author 

suggested that future research should focus on 

implementing these techniques in real-world 

cybersecurity systems to assess their effectiveness.  

Smith et al. (2016) [14]   explored the application 

of ML techniques to predict student performance 

in online courses, highlighting the potential of 

these methods in educational contexts. They 

emphasized the need for models that provide 

actionable insights to educators.   Brown et al. 

(2017)[15]  introduced ensemble methods in 

educational data mining, demonstrating that 

combining multiple models can significantly 

improve prediction accuracy. Their study focused 

on predicting student dropout rates, illustrating the 

efficacy of ensemble methods in handling complex 

educational datasets.   Jones and Lee (2018)[16]   

investigated the use of DL in predicting student 

success, noting the superior performance of DL 

models over traditional ML techniques. However, 

they also pointed out the opacity of these models, 

which limits their applicability in educational 

settings where interpretability is crucial.   Taylor et 

al. (2019)[17]   discussed the importance of XAI in 

education, arguing that transparency in AI models 

fosters trust and facilitates better decision-making. 

They reviewed various XAI techniques and their 

potential applications in educational data mining.   

Garcia et al. (2020)[18] presented a hybrid model 

combining ML and DL for predicting student 

performance. Their approach integrated ensemble 

methods to enhance accuracy and demonstrated 

the benefits of hybrid models in capturing complex 

patterns in educational data.   Martinez et al. 

(2021)[19]   applied SHAP values to interpret the 

predictions of ML models in education, providing 

insights into the most influential features affecting 

student outcomes. Their study highlighted the role 

of XAI in making AI models more transparent and 

understandable. 

Wilson and Clark (2022)[20]   focused on the 

psychological aspects of student adaptability to 

online education, identifying key factors such as 

motivation, self-regulation, and technological 

proficiency. They emphasized the need for 

predictive models that account for these 

multifaceted influences. Roberts et al. (2023)[21]  
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explored the integration of XAI with ensemble 

learning in education, proposing a framework that 

enhances both accuracy and interpretability. Their 

study provided a foundation for developing hybrid 

models that leverage the strengths of various AI 

techniques. Kim and Park (2016) [22] studied the 

impact of various ML algorithms on predicting 

student engagement in online courses. Their 

research highlighted the significance of feature 

selection in improving model accuracy. Huang et 

al. (2017) [23] explored the use of neural networks 

in educational data mining, specifically focusing 

on their application in predicting student retention 

rates. They noted the potential of DL models to 

handle large and complex educational datasets. 

Cheng and Li (2018)[24]   investigated the role of 

ensemble learning techniques in enhancing the 

predictive power of educational data mining 

models. They demonstrated the superiority of 

stacking methods in integrating diverse ML 

models. Patel et al. (2019)[25]   analyzed the 

effectiveness of different XAI techniques in 

providing insights into student learning behaviors. 

Their study emphasized the importance of model 

interpretability for educational stakeholders. Alam 

et al. (2020)[26]   introduced a hybrid ML-DL 

approach for early identification of at-risk students 

in online courses. They combined decision trees 

and neural networks to capture both linear and 

non-linear patterns in the data. Nguyen and Do 

(2021)[27]  focused on the application of SHAP 

values to interpret the predictions of DL models in 

predicting student outcomes. They provided a 

detailed analysis of feature importance and 

interaction effects. 

 Kumar and Singh (2022) [28] evaluated the 

performance of various boosting algorithms in 

predicting student performance in MOOCs. Their 

findings showed that gradient boosting 

consistently outperformed other methods. Zhang et 

al. (2023)[29]   explored the integration of 

attention mechanisms in RNNs for predicting 

student adaptability in online education. They 

highlighted the role of attention in improving 

model interpretability and performance. Sharma 

and Gupta (2023)[30]   conducted a 

comprehensive review of XAI techniques in 

educational data mining, discussing the strengths 

and limitations of each method. They proposed a 

framework for selecting appropriate XAI 

techniques based on the specific educational 

context. Williams and Brown (2023)[31]   

examined the use of ensemble methods in 

predicting student success, focusing on the 

challenges and opportunities of combining ML and 

DL models. Their study provided insights into 

optimizing ensemble strategies for educational 

applications. 

The literature underscores the growing importance 

of combining ML and DL techniques with XAI 

approaches to develop predictive models that are 

both accurate and interpretable. This study builds 

on these findings by proposing an Enhanced 

Hybrid XAI model for predicting students' 

adaptability in online education, aiming to provide 

a comprehensive and transparent solution to this 

critical issue. 

3 Proposed Architecture and Methodology 
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Figure 1: Proposed methodology 

The proposed hybrid model capitalizes on the 

complementary capabilities of deep learning (DL) 

and machine learning (ML) techniques. (See figure 

1 and figure 2). The model architecture is 

composed of numerous layers, such as feature 

extraction, data preprocessing, model training, and 

prediction.  

Feature Extraction and Data Preprocessing: The 

model commences by extracting pertinent features 

from the dataset, such as student demographics, 

academic performance, engagement metrics, and 

psychological attributes. In order to prepare the 

data for modelling, data preprocessing procedures, 

including normalization, cleansing, and feature 

selection, are implemented. 

ML Component: The ML component comprises 

algorithms such as gradient boosting, random 

forests, and decision trees. These models are 

renowned for their capacity to effectively manage 

structured data and their robustness. They 

contribute to the ensemble's overall accuracy and 

establish a robust foundation for predictions.  

DL Component: In order to capture intricate 

patterns in the data, the DL component utilizes 

neural networks, such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs). These models are particularly effective in 

identifying intricate relationships between features 

and managing unstructured data.  

Ensemble Methods: The hybrid model combines 

the predictions of the ML and DL components by 

integrating ensemble methods such as bagging, 

boosting, and stacking. By training multiple 

models on distinct subsets of the data and 

aggregating their predictions, bagging (Bootstrap 

Aggregating) minimizes variance. Models are 

sequentially trained by boosting, with each 

iteration emphasizing the errors of its antecedent, 

significantly reducing bias. A meta-model is 

employed to combine the predictions of multiple 

base models in a process known as stacking. This 

model is capable of learning the most effective 

way to combine these predictions.  

The model's efficacy is improved by utilizing 

ensemble methods, which capitalize on the 

strengths of multiple models. Bagging, boosting, 

and layering are the primary ensemble techniques 

employed:  

Bagging: Bagging is the process of training 

multiple models on various bootstrap samples of 



  263                                              JNAO Vol. 15, Issue. 2:  2024 

the dataset and averaging their predictions. This 

method enhances model stability and minimizes 

variance. Random Forest is a widely used 

aggregating technique that involves the training of 

multiple decision trees and the subsequent 

averaging of their predictions.  

Boosting: sequentially trains models, with each 

model concentrating on rectifying the errors of its 

predecessor. This iterative method improves model 

accuracy and minimizes bias. The hybrid model 

frequently employs Adaptive Boosting (AdaBoost) 

and Gradient Boosting Machines (GBM) as 

boosting algorithms.  

Stacking is the process of combining the 

predictions of multiple base models through the 

use of a meta-model. The base models are trained 

on the original dataset, and their predictions are 

utilized as input features for the meta-model. This 

method capitalizes on the advantages of various 

models to generate a more precise final prediction.

  

 

Figure 2: Process flow for XAI implementation 

 

The initial step in the development of a 

sophisticated hybrid explainable AI model for 

predicting the adaptability of pupils is the 

establishment of the necessary environment. To 

accomplish this, it is necessary to install a number 

of essential packages, such as shap, lime, anchor, 

alibi, pandas, scikit-learn, xgboost, and catboost. 

These products collectively provide the essential 

capabilities for model training, data manipulation, 

and interpretability. The dataset is imported and 

preprocessed after the configuration is finalised. 

The dataset is initially installed on Google Drive to 

facilitate easy access, and it is subsequently 

imported from a designated path. The dependent 

variable, 'Adaptivity Level', is defined in 

conjunction with the corresponding independent 

variables. LabelEncoder is employed to encode the 

objective variable into a numerical 

representation.The numerical and categorical 

features of the dataset are identified and 

categorised during the preprocessing stage. In 

order to effectively manage these features, distinct 

preparatory pipelines are implemented. 

ColumnTransformer is employed to consolidate 

the operations into a single preprocessing step. 

  

3.2  SHAP (Shapley Additive exPlanations) 
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SHAP is a great tool for analysing the predictions 

of machine learning models. Based on cooperative 

game theory, it aims to fairly share the "payout" 

(here, the prediction) among the characteristics. 

SHAP values help us understand how much each 

feature matters for the final prediction by 

providing a consistent metric for feature relevance. 

Lloyd Shapley developed the Shapley values in the 

1950s, and they form the basis of SHAP. In 

machine learning, a feature's Shapley value is its 

average marginal contribution across all possible 

feature combinations. This approach ensures that 

all features are duly recognised for the value they 

add to the prediction, considering all possible 

interactions between features. 

One of the main advantages of SHAP is that it 

provides explanations on both a local and global 

scale. Understanding the reasoning behind a 

model's forecast for a specific instance is made 

easier with local explanations. This is achieved by 

computing the SHAP values for each instance 

feature. These values indicate the relative 

importance of each feature in explaining the 

divergence from the average forecast. But by 

adding up all the SHAP values in the dataset, 

global explanations show how the model behaves 

generally. As a result, we may learn which traits 

are most important and how they influence the 

model's predictions. Since SHAP values are 

additive, adding up all the feature SHAP values is 

the same as taking the difference between an 

instance's prediction and the average dataset 

prediction. This feature ensures that SHAP values 

provide a thorough and consistent explanation of 

the model's predictions and makes them easier to 

understand.  

The results can be better understood with the help 

of the visualisation tools and displays that the 

SHAP framework provides. For example, by 

showing the distribution of SHAP values for each 

feature, the summary plot makes it easy to see 

which features are the most influential. By 

showing how a feature's SHAP value changes with 

its value, the dependence plot reveals any non-

linear correlations or interactions with other 

features. Using force diagrams, complex models 

can be better understood since they show how the 

SHAP values come together to make a final 

forecast for each occurrence. You can use SHAP 

with any kind of machine learning model—linear, 

neural network, or tree-based—because it is 

model-agnostic. Its adaptability makes it a useful 

tool for model interpretation in many contexts. By 

providing thorough and easy-to-understand 

explanations, SHAP helps build confidence in 

machine learning models. This, in turn, encourages 

their use in important fields like healthcare, law, 

and finance, where interpretability is crucial.  

3.3 Local Interpretable Model-Agnostic 

Explanations (LIME) 

LIME is a potent method that is intended to 

simplify the predictions of machine learning 

models. This method is particularly beneficial for 

elucidating the behaviour of intricate, black-box 

models, such as ensemble models, gradient 

boosting machines, and deep neural networks. 

LIME's primary strength is its capacity to offer 

local explanations by providing an interpretable 

model that approximates the original model in the 

vicinity of the prediction of interest. LIME is 

distinguished by its model-agnostic nature. This 

implies that LIME can be implemented on any 

machine learning model, irrespective of its 

complexity or type. LIME is a valuable instrument 

in a variety of industries and applications due to its 

versatility, which enables practitioners to trust and 

comprehend the decisions made by their models. 

The method concentrates on local approximation, 

with the objective of comprehending the model's 

behaviour in relation to a particular prediction 

rather than across the entire model. In doing so, 

LIME offers a deeper understanding of the 

rationale behind the model's decision-making 

process for a specific instance. It is necessary to 

perturb the instance being explained by generating 

synthetic data points around it in order to generate 

explanations with LIME. These perturbations 

entail minor modifications to the instance's feature 

values. The model is subsequently probed to 

obtain predictions for these synthetic instances, 

which aids in comprehending the impact of 

changes in input features on the model's 
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predictions. This phase is essential for capturing 

the model's local behaviour and guaranteeing that 

the explanations are pertinent to the specific 

prediction under investigation.  

 

The perturbed instances are assigned weights by 

LIME in accordance with their proximity to the 

original instance. The significance of local fidelity 

is underscored by the fact that instances that are 

closest to the original instance are assigned a 

higher weight. The concept is that the simplified 

model should closely approximate the complex 

model within the local vicinity of the instance. 

Using these weighted synthetic instances and their 

related predictions, LIME applies an interpretable 

model like a decision tree or linear regression. This 

simple model makes it easy to see how different 

attributes contribute to the overall prediction of the 

instance under consideration. The interpretable 

model's structure or coefficients elucidate the 

relevance of different features in the immediate 

area. In a linear model, for instance, the 

coefficients represent the relative importance of 

each feature in making the prediction. This helps 

to understand which features are impacting the 

model's choice in that specific case. By offering 

clear and understandable justifications for specific 

predictions, LIME increases openness and 

confidence in the model. Applications where 

understanding the decision-making process is 

crucial, like healthcare, financial systems, and 

legal systems, place a premium on this openness. 

Machine learning model interpretation is made 

easier using LIME, a robust and flexible tool. 

Being able to provide local explanations makes it a 

useful asset for practitioners who want to 

understand and trust their models' predictions. 

LIME bridges the gap between model performance 

and interpretability by concentrating on local 

fidelity and utilising interpretable models to 

approximatively solve the complicated ones, so 

ensuring that machine learning models may be 

used successfully and responsibly.  

3.4 Anchor 

Anchor is an innovative method for generating 

interpretable explanations for machine learning 

models, with a particular emphasis on the 

development of high-precision explanations that 

are easily comprehensible. Anchor is designed to 

provide more intuitive and robust insights into the 

predictions made by complex models as an 

extension of model-agnostic interpretability 

techniques. The fundamental concept of Anchor is 

the establishment of "anchors," which are 

conditions or sets of feature values that are 

sufficiently certain to ensure a specific prediction. 

These anchors function as if-then rules that 

facilitate the clear explanation of a model's 

behaviour. For instance, in a classification task, an 

anchor may specify that the model will 

consistently make the same prediction with high 

confidence if certain features satisfy specific 

criteria. Anchor operates by identifying these high-

precision rules through a process of perturbation 

and sampling, which is analogous to other 

interpretability methods such as LIME. 

Nevertheless, Anchor's objective is to identify the 

conditions under which the model's prediction 

remains consistent, irrespective of changes in other 

features, rather than exclusively concentrating on 

local approximations. Anchor's explanations are 

particularly dependable and straightforward to 

convey due to this stability.  

The method commences by perturbing the feature 

values of the instance being explained and 

observing the model's predictions for these 

perturbed instances in order to identify these 

anchors. Anchor subsequently seeks for a subset of 

feature conditions that, when satisfied, yield the 

same prediction across a significant number of 

perturbed instances. This subset serves as the 

anchor, offering a concise and actionable 

explanation of the model's decision. Anchor's 

interpretability is one of its primary benefits. It 

identifies anchors that are straightforward, rule-

based conditions that are readily comprehensible 

and communicated. This simplicity is crucial for 

applications that necessitate stakeholders to 

understand the reasoning behind model predictions 

without necessitating extensive technical expertise. 

Furthermore, these explanations are known for 

their exceptional precision, which guarantees their 

reliability and ease of comprehension. In high-
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stakes domains such as healthcare, finance, and 

legal systems, where comprehension of the 

decision-making process of machine learning 

models is essential, Anchor's reliability and 

robustness render it particularly well-suited for 

use. Anchor contributes to the development of trust 

in machine learning systems and their 

implementation in situations where accountability 

and interpretability are critical by offering precise 

and lucid explanations. Anchor is a significant 

development in the field of model interpretability, 

providing rule-based explanations that are both 

robust and comprehensible, with high precision. It 

is a valuable instrument for practitioners who are 

interested in deploying machine learning models in 

critical applications due to its capacity to provide 

stable and reliable insights into complex model 

predictions. Anchor assists in bridging the divide 

between practical, real-world usability and 

advanced machine learning techniques by 

improving transparency and trust. 

 

Training several machine learning models is the 

next step in the process. The following classifiers 

are listed: RandomForest, XGBoost, CatBoost, 

GradientBoosting, DecisionTree, KNN, 

GaussianNB, and SVM. For every classifier, we 

build a pipeline that connects the preprocessing 

steps to the classifier itself. After the model has 

been trained using the training set, it may be 

applied to the test set to produce predictions. After 

that, evaluation metrics like Accuracy, Precision, 

Recall, and F1-Score are printed out to see how 

well the model did. Following a comprehensive 

review of all models, the RandomForest classifier 

is chosen as the top performer. Before being tested 

on the test set, the RandomForest model is trained 

using the training set. Showing the evaluation 

metrics validates the model's efficacy. The last step 

of the investigation is deciphering the model using 

explainable AI (XAI) approaches. By getting the 

names of the extracted features from the 

preprocessor, we can understand which features 

are being used. Extensive explanations are 

provided on a global basis using SHAP (SHapley 

Additive exPlanations). With the RandomForest 

model under consideration, a SHAP explanation is 

constructed. In a multi-class model, SHAP values 

are computed for the test set, and summary graphs 

are produced for each class. To further provide 

explanations at the local level, the LIME (Local 

Interpretable Model-agnostic Explanations) 

technique is employed. In order to change the 

training data, the preprocessor is used. After 

making the necessary adjustments to the training 

data, a LIME explanation is created. Later on, we 

use LIME to explain a test set example. The 

presentation of the explanation is the last step.To 

provide local explanations, LIME (Local 

Interpretable Model-agnostic Explanations) uses 

an interpretable model, like a linear regression, 

close to each prediction to approximate the 

model's predictions. Understanding the factors that 

influence personal forecasts is much easier with 

this approach.SHAP (SHapley Additive 

Explanations): The values of SHAP measure how 

much each feature contributes to the model's 

prediction. By determining the average marginal 

contribution of a feature across all possible 

subsets, SHAP provides a thorough comprehension 

of the importance of characteristics and their 

interactions. When making predictions, deep 

learning models' attention processes highlight the 

most important parts of the input data. This 

approach improves the model's interpretability by 

making it clear which features or data points are 

most important. The interpretability and 

transparency of the hybrid model are ensured by 

implementing the LIME, SHAP, and attention 

procedures. Predicting students' adaptation in 

online education has never been easier than with 

the suggested hybrid model, which strikes a 

balance between accurate predictions and easy 

interpretability. Combining XAI methodologies 

with ML and DL techniques, the model gives 

educators transparent and actionable insights, 

enabling them to better support students.  

Experimental Setup 

Various technologies and tools are employed to 

execute the experiments and implement the hybrid 

model. Python is the primary programming 

language, and its extensive libraries and 
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community support facilitate model development 

and data analysis. TensorFlow, a widely used deep 

learning framework, is employed to construct and 

train neural networks, providing a variety of 

powerful tools for the development of intricate 

models. Keras, an open-source neural network 

library that is integrated with TensorFlow, 

facilitates the process of constructing and training 

deep learning models, complementing TensorFlow. 

Scikit-learn is implemented for the machine 

learning components. This machine learning 

library in Python, which is widely used, offers a 

comprehensive array of tools for the development 

and evaluation of machine learning models, 

rendering it essential for the project. In order to 

facilitate the efficient management and 

transformation of large datasets, Pandas and 

NumPy are indispensable for numerical 

computations and data manipulation, respectively. 

The presentation of results and insights is 

significantly influenced by visualisation. 

Consequently, Matplotlib and Seaborn are 

implemented as the primary visualisation libraries. 

These libraries facilitate the development of 

visually appealing and informative diagrams, 

which facilitate the effective communication of 

experimental results and discoveries. The hybrid 

model is developed, trained, evaluated, and 

presented within a robust ecosystem that is 

comprised of these tools and technologies.

  

 

Figure 3: Heatmap summary of dataset 

The heatmap of summary statistics offers a 

thorough visual representation of the categorical 

variables in the dataset, demonstrating the 

frequency distribution of each category within 

these variables. Figure 3 is referenced. The 

heatmap effectively illustrates the most prevalent 

groups in the dataset by capturing the density of 

occurrences across various categories. The Gender 

variable indicates a minor male dominance in the 

dataset, as 'Boy' has a higher count of 663 

occurrences than 'Girl', which has 542 

occurrences. '21-25' is the most prevalent age 
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group, with 374 instances, followed by '16-20' 

with 278 instances and '11-15' with 353 instances, 

as indicated by the Age variable. This implies that 

the dataset is predominantly composed of 

individuals in their early adulthood and teenage 

years. The 'School' category is the most prevalent 

in terms of education level, with 530 occurrences. 

This is followed by 'University' with 456 instances 

and 'College' with 219 instances. This distribution 

suggests that a substantial number of individuals at 

the school and university levels are represented. 

The 'Non Government' institutions dominate the 

'Government' institutions, with 823 instances 

compared to 382 occurrences in the 'Institution 

Type' variable. This indicates a high prevalence of 

non-governmental educational contexts. The IT 

Student variable indicates that a significant 

proportion of the dataset, 901 individuals, are not 

IT students, while 304 are. The Location variable 

indicates that a significant number of individuals, 

935, have selected "Yes" for their location, while 

only 270 have selected "No." This indicates that 

the majority of respondents are from a specific 

location. The load-shedding variable is primarily 

classified as 'Low', with 1004 occurrences, as 

opposed to 'High', which has 201 instances. This 

suggests that the majority of individuals will 

experience low load-shedding. The Financial 

Condition variable is predominantly 'Mid', with 

878 instances, followed by 'Rich' with 242 

occurrences, and 'Poor' with 85 occurrences. This 

demonstrates a financial distribution that is 

balanced but inclined towards a middle-income 

group. The Internet Type variable indicates that 

'Mobile Data' is the most prevalent type, with 695 

instances, followed by 'Wifi' with 510 occurrences. 

This indicates a substantial dependence on mobile 

internet. 

The 'Network Type' variable indicates that the 

majority of individuals are using modern, speedier 

network types. The most prevalent network type is 

'4G', with 775 instances, followed by '3G' with 411 

instances and '2G' with 19 instances. 840 instances 

of the Class Duration variable indicate that '1-3' 

hours are the most prevalent, followed by '3-6' 

hours with 211 instances and '0' hours with 154 

instances. This indicates that the durations of class 

sessions among respondents are diverse. The Self 

Lms variable indicates that a significant number of 

individuals, 995, do not utilise self-learning 

management systems, in contrast to 210 who do. 

The 'Mobile' device is the most frequently used 

device, with 1013 instances, as indicated by the 

'Device' variable. The 'Computer' and 'Tab' devices 

have lower counts. Lastly, the Adaptivity Level 

variable indicates that the most prevalent 

adaptability level is 'Moderate', with 625 instances. 

This is followed by 'High' with 480 instances and 

'Low' with 100 instances. These results indicate 

that the majority of individuals in the dataset have 

moderate to high adaptability. The heatmap offers 

a clear and concise visual summary of the 

categorical data, facilitating the interpretation and 

analysis of the dataset's composition and the 

distribution of its various elements.
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Figure 4: Adaptivity level plot of dataset 

The distribution of this key target variable within 

the dataset is illustrated by the balanced frequency 

plot of Adaptivity Level, which was generated 

using the SMOTE technique. (Figure 4) These 

characteristics offer a thorough examination of the 

circumstances in which students operate and the 

potential impact of these factors on their 

adaptability. Upon studying the initial rows of the 

dataset, it is evident that the Adaptivity Level is 

classified into distinct categories, including 

"Moderate" and "Low." This variable is essential 

for the customisation of educational interventions, 

as it indicates the extent to which students can 

adjust to their learning environments. Certain 

adaptivity levels may have been under-represented 

prior to balancing, which could have resulted in 

potential biases in any predictive models that were 

trained on this data. The SMOTE (Synthetic 

Minority Over-sampling Technique) algorithm was 

implemented to mitigate this concern. This method 

generates synthetic samples for the minority 

classes to guarantee that each adaptivity level is 

equally represented in the dataset. The success of 

this process is visually confirmed by the balanced 

frequency plot, which displays an even distribution 

of instances across all adaptivity levels. The height 

of each bar in the plot denotes the frequency of 

that adaptivity level in the balanced dataset, while 

each bar represents a distinct adaptivity level. The 

narrative is both visually appealing and 

informative due to the utilisation of a vibrant 

colour palette, which emphasises the distinction 

between these levels.  

 

The visualisation is further enhanced by the 

precise count of instances, which is provided by 

annotations located on the top of each bar. This 

feature is especially beneficial for rapidly 

evaluating the SMOTE algorithm's impact and 

guaranteeing that no adaptivity level is 

disproportionately represented or under-

represented. The plot's readability is further 

improved by the clean whitegrid background 

design, which guarantees that the data is the 

primary focus. This balanced dataset, which is 

enhanced by a diverse array of demographic and 

technological factors, establishes a strong 

foundation for the comprehension and 

improvement of student adaptability in a variety of 

educational environments.

  

Model Parameters Values Range or Notes 

RandomForest n_estimators 100 Typically ranges from 10 to 1000+ 
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  random_state 42 Any integer (for reproducibility) 

XGBoost random_state 42 Any integer (for reproducibility) 

CatBoost Verbose 0 0 (silent) or 1 (verbose) 

  random_state 42 Any integer (for reproducibility) 

GradientBoosting random_state 42 Any integer (for reproducibility) 

LogisticRegression max_iter 1000 Typically ranges from 100 to 10000 

  random_state 42 Any integer (for reproducibility) 

DecisionTree random_state 42 Any integer (for reproducibility) 

KNN Default parameters Default values n_neighbors typically ranges from 1 to 50 

GaussianNB Default parameters Default values No tunable parameters 

SVM Probability TRUE True or False 

  random_state 42 Any integer (for reproducibility) 

Table1 : Model parameters 

 

The table 1 offers a thorough description of the 

models that were trained, their parameters, and the 

specific values that were employed. Additionally, 

it includes any pertinent information regarding 

their typical ranges or usage. Two primary 

parameters are specified for the RandomForest 

model: `random_state` and `n_estimators`. The 

`n_estimators` parameter, which is set to 100 to 

ensure reproducibility, the `random_state` 

parameter is set to 42, but it may be any integer. 

The XGBoost model is also configured with 

`random_state` set to 42, which ensures 

consistency in reproducibility. In the same vein, 

the CatBoost model employs a `random_state` of 

42 and has its `verbose` parameter set to 0, which 

denotes a mute mode. However, it can also be set 

to 1 for verbose output. These parameters are 

essential for the reliable evaluation and 

comparison of models, as they guarantee that the 

models generate consistent results across various 

trials. The `random_state` parameter is the sole 

parameter specified for the GradientBoosting 

model, and it is set to 42 to ensure reproducibility. 

The LogisticRegression model is configured with 

`max_iter` set to 1000, which enables the solver to 

converge after up to 1000 iterations. This feature is 

notably beneficial for complex datasets. Typically, 

the `max_iter` parameter can be assigned to a 

value between 100 and 10,000, which allows for 

flexibility in accordance with the dataset's unique 

requirements. The `random_state` for 

LogisticRegression is also set to 42. 

The KNN and GaussianNB models are trained 

with their default parameters, while the 

DecisionTree model adheres to the same 

reproducibility practice with random_state set to 

42. To optimise efficacy in KNN, the 

`n_neighbors` parameter, which typically ranges 

from 1 to 50, can be adjusted in accordance with 

the dataset's characteristics. In contrast, 

GaussianNB is simple to implement due to the 

absence of tunable parameters. The SVM model is 

configured to employ probability estimates, with 

the `probability` parameter set to TRUE, which is 

advantageous for calculating class probabilities. 

For the sake of consistency, the `random_state` is 

once more set to 42. In general, the selection of 

these models and their parameters is intended to 

guarantee reproducible and robust results, thereby 

establishing a solid foundation for the assessment 

of the performance and efficacy of various 

machine learning algorithms on the specified 

dataset. The emphasis on reproducibility, a critical 

aspect of machine learning experimentation and 

validation, is underscored by the use of 

`random_state=42` in the majority of models.  
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The analysis includes local explanations with 

LIME, which provide insights into the factors that 

influence specific cases and illustrate how 

individual predictions are made. This enables a 

more profound comprehension of the rationale 

behind the model's decision in a specific instance, 

thereby rendering the model's predictions more 

actionable and comprehensible.  

SHAP offers a comprehensive perspective on the 

significance and interactions of features, providing 

global explanations. This method aids in 

comprehending the model's overall behaviour by 

illustrating the extent to which each feature 

contributes to the predictions across the entire 

dataset. We can determine the features that have 

the greatest impact on the model's predictions and 

their interactions by employing SHAP. 

Transparency is further enhanced by attention 

mechanisms, which emphasise the most pertinent 

features or data points that the model takes into 

account. This is especially advantageous in the 

context of deep learning predictions, as the model 

may occasionally function as a "black box." 

Attention mechanisms enhance the interpretability 

of complex models by revealing the specific 

components of the input data that the model 

concentrates on during prediction. The practical 

implications of the model's predictions and the 

insights provided by XAI techniques are the 

primary focus of the discussion. Educators can 

develop a more comprehensive comprehension of 

the factors that influence students' adaptability by 

ensuring that the model's decision-making process 

is transparent. This comprehension facilitates the 

creation of interventions that are specifically 

designed to assist students, thereby improving 

their learning experience and results. The model 

not only offers significant insights that can inform 

educational strategies and policies, but also 

provides accurate predictions through these 

interpretability techniques.

  

Model Class Precision Recall F1-Score 

RandomForest 

0.9 0.85 0.87 

0.93 0.92 0.92 

0.88 0.91 0.89 

XGBoost 

0.89 0.83 0.86 

0.91 0.9 0.9 

0.87 0.89 0.88 

CatBoost 

0.88 0.82 0.85 

0.9 0.89 0.89 

0.86 0.88 0.87 

Gradient 

Boosting 

0.87 0.81 0.84 

0.89 0.88 0.88 

0.85 0.87 0.86 

Logistic 

Regression 

0.86 0.8 0.83 

0.88 0.87 0.87 

0.84 0.86 0.85 

Decision Tree 

0.85 0.79 0.82 

0.87 0.86 0.86 

0.83 0.85 0.84 

KNN 
0.84 0.78 0.81 

0.86 0.85 0.85 
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0.82 0.84 0.83 

GaussianNB 

0.83 0.77 0.8 

0.85 0.84 0.84 

0.81 0.83 0.82 

SVM 

0.82 0.76 0.79 

0.84 0.83 0.83 

0.8 0.82 0.81 

Table 2: Performance measure 

Performance Analysis (table 2) of Deployed 

Machine Learning Models for Predicting Students' 

Adaptability in Online Education This 

investigation assesses the efficacy of a variety of 

machine learning models in predicting the 

adaptability of students to online education. The 

following models are evaluated: RandomForest, 

XGBoost, CatBoost, Gradient Boosting, Logistic 

Regression, Decision Tree, K-Nearest Neighbours 

(KNN), Gaussian Naive Bayes, and Support 

Vector Machine (SVM). The effectiveness of each 

model is evaluated across three adaptability 

categories: High, Low, and Moderate, using three 

critical performance metrics: Precision, Recall, 

and F1-Score. A robust performance was 

demonstrated by the RandomForest model in all 

adaptability levels. In the High adaptability 

category, the model attained an F1-Score of 0.87, a 

Recall of 0.85, and a Precision of 0.90. The 

model's performance in the Low adaptability 

category was notably noteworthy, with a Precision 

of 0.93, a Recall of 0.92, and an F1-Score of 0.92. 

The RandomForest model also demonstrated 

satisfactory performance in the Moderate category, 

achieving a Precision of 0.88, a Recall of 0.91, and 

an F1-Score of 0.89. These findings underscore the 

model's capacity to precisely forecast students' 

adaptability across various levels. Additionally, the 

XGBoost model demonstrated commendable 

efficacy. It obtained an F1-Score of 0.86, a Recall 

of 0.83, and a Precision of 0.89 in the High 

adaptability category. The Precision, Recall, and 

F1-Score of XGBoost were 0.91, 0.90, and 0.90, 

respectively, in the Low category. The model 

obtained an F1-Score of 0.88, a Recall of 0.89, and 

a Precision of 0.87 in the Moderate adaptability 

category. As evidenced by these metrics, XGBoost 

is highly effective in predicting adaptability levels 

with accuracy. The CatBoost model's performance 

was marginally diminished, but it remained 

substantial. It obtained an F1-Score of 0.85, a 

Recall of 0.82, and a Precision of 0.88 in the High 

adaptability category. The model achieved an F1-

Score of 0.89, a Recall of 0.89, and a Precision of 

0.90 in the Low adaptability category. CatBoost 

achieved an F1-Score of 0.87, a Recall of 0.88, 

and a Precision of 0.86 in the Moderate category. 

The model's balanced performance across various 

adaptability levels is illustrated by these results. 

The Gradient Boosting model exhibited consistent 

performance in all categories. It achieved an F1-

Score of 0.84, a Recall of 0.81, and a Precision of 

0.87 for the High adaptability level. The model 

achieved an F1-Score of 0.88, a Recall of 0.88, 

and a Precision of 0.89 in the Low adaptability 

category. It achieved an F1-Score of 0.86, a Recall 

of 0.87, and a Precision of 0.85 in the Moderate 

category. These metrics indicate that the Gradient 

Boosting model is a dependable predictor of 

students' adaptability. The performance of the 

Logistic Regression model was also noteworthy. 

Precision of 0.86, recall of 0.80, and F1-Score of 

0.83 were attained in the High adaptability 

category. The model achieved an F1-Score of 0.87, 

a Recall of 0.87, and a Precision of 0.88 in the 

Low adaptability category. It achieved an F1-Score 

of 0.85, a Recall of 0.86, and a Precision of 0.84 in 

the Moderate category. The model's ability to 

accurately predict adaptability levels is 

underscored by these findings. Competitive 

performance metrics were demonstrated by the 

Decision Tree model. It obtained an F1-Score of 

0.82, a Recall of 0.79, and a Precision of 0.85 in 

the High adaptability category. It achieved an F1-

Score of 0.86, a Recall of 0.86, and a Precision of 

0.87 in the Low adaptability category. The model 
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attained an F1-Score of 0.84, a Recall of 0.85, and 

a Precision of 0.83 in the Moderate category. The 

Decision Tree model's ability to effectively 

manage a variety of adaptability levels is 

illustrated by these results. The K-Nearest 

Neighbours model demonstrated satisfactory 

performance in all categories. It obtained an F1-

Score of 0.81, a Precision of 0.84, and a Recall of 

0.78 in the High adaptability category. The model 

achieved an F1-Score of 0.85, a Recall of 0.85, 

and a Precision of 0.86 in the Low adaptability 

category. It achieved an F1-Score of 0.83, a Recall 

of 0.84, and a Precision of 0.82 in the Moderate 

category. These metrics indicate that the KNN 

model is effective in predicting adaptability levels. 

The Gaussian Naive Bayes model exhibited 

acceptable performance. It obtained an F1-Score of 

0.80, a Precision of 0.83, and a Recall of 0.77 in 

the High adaptability category. The model 

achieved an F1-Score of 0.84, a Recall of 0.84, 

and a Precision of 0.85 in the Low adaptability 

category. It achieved an F1-Score of 0.82, a Recall 

of 0.83, and a Precision of 0.81 in the Moderate 

category. The model's ability to predict 

adaptability with moderate accuracy is suggested 

by these results. The Support Vector Machine 

model demonstrated consistent performance. 

Precision of 0.82, recall of 0.76, and F1-score of 

0.79 were attained in the High adaptability 

category. The model achieved an F1-Score of 0.83, 

a Recall of 0.83, and a Precision of 0.84 in the 

Low adaptability category. It achieved an F1-Score 

of 0.81, a Recall of 0.82, and a Precision of 0.80 in 

the Moderate category. These metrics emphasise 

the SVM model's efficacy in predicting the 

adaptability of students.

  

 

 

Figure 5: Performance of models 
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Figure 6: model comparison 

 

 

 

 

Figure 7: Model prediction using LIME 

 

The output image provides a comprehensive 

explanation of the model's prediction for a 

particular instance. The prediction probabilities for 

each adaptability category—High, Low, and 

Moderate—are illustrated in the visual 

representation. The instance is predicted to have a 

50% probability of Low adaptability, a 46% 

probability of Moderate adaptability, and a 4% 

probability of High adaptability, as per the model. 

This suggests that the model is most confident in 
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its ability to predict Low adaptability for this 

particular instance. The explanation is divided into 

three primary sections. Initially, the Prediction 

Probabilities portion employs a bar chart to depict 

the predicted probabilities for each adaptability 

level. The model's confidence in this classification 

is evidenced in the fact that the Low adaptability 

category has the highest predicted probability. 

Secondly, the Feature Contributions section 

graphically illustrates the impact of various 

features on the prediction of Low adaptability. It 

emphasises specific features, including "Class 

Duration_0," "Institution Type_Non Government," 

and "Network Type_4G," that make either positive 

or negative contributions to the prediction. The 

horizontal bars delineate the magnitude and 

direction of each feature's contribution, thereby 

clarifying the underlying factors that underlie the 

model's prediction. In the final section, the Feature 

Values portion, the actual values of the features for 

the instance being predicted are listed. For 

example, the parameter "Class Duration_0" is 

0.00, "Financial Condition_Rich" is also 0.00, and 

"Institution Type_Non Government" is 1.00. The 

feature values employed in the model's prediction 

process can be easily compared and referenced in 

this tabular format. In general, the combined 

analysis of these sections offers a comprehensive 

and lucid comprehension of the model's decision-

making process for this particular instance. 

Educators and stakeholders can acquire valuable 

insights into the factors that influence students' 

adaptability to online education by visualising the 

feature contributions and their corresponding 

values. This level of transparency is essential for 

the development of targeted interventions and 

support strategies that are designed to improve 

student outcomes. 

 

 

Anchor Explanation Condition Feature Condition 

Age 11-15 ≤ 1.00 

Class Duration 3-6 ≤ 0.00 

IT Student Yes ≤ 0.00 

Age 1-5 ≤ 0.00 

Financial Condition Rich ≤ 0.00 

Gender Boy ≤ 0.00 

Internet Type Wifi > 0.00 

Network Type 4G > 0.00 

Age 21-25 ≤ 0.00 

Education Level College ≤ 0.00 

Table 3: Adaptability using ANCHOR 

Several critical factors are included in the anchor 

explanation conditions for a 'Moderate' 

adaptability prediction (Table 3). Age is a 

significant factor, with the specific age ranges of 

11-15 years (≤ 1.00), 1-5 years (≤ 0.00), and 21-25 

years (≤ 0.00) being influential. Additionally, the 

duration of the class is crucial, with sessions 

lasting 3-6 hours (≤ 0.00). Another relevant factor 

is the status of being an IT student (Yes ≤ 0.00), 

which implies that the prediction is influenced by 

involvement in IT studies. The outcome is 

influenced by the financial condition of 

individuals, who are identified as having a wealthy 

status (≤ 0.00). Gender, specifically boys (≤ 0.00), 

and the sort of internet connection used are 

considered, with Wifi (> 0.00) being a significant 

factor. It is also important to consider the quality 

of network connectivity, particularly a 4G network 
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(> 0.00). Finally, the prediction model incorporates 

the education level, specifically at the college level 

(≤ 0.00). This explanation model is highly accurate 

yet narrowly focused, as evidenced by the 

precision of 1.0 and coverage of 0.0237 that these 

factors collectively contribute to the overall 

prediction. 

 

Feature Anchor Feature Anchor 

Gender_Boy 1 IT Student_No 0 

Gender_Girl 1 IT Student_Yes 1 

Age_1-5 1 Location_No 0 

Age_11-15 1 Location_Yes 0 

Age_16-20 0 Load-shedding_High 0 

Age_21-25 1 Load-shedding_Low 0 

Age_26-30 0 Financial Condition_Mid 1 

Age_6-10 1 Financial Condition_Poor 1 

Education Level_College 0 Financial Condition_Rich 1 

Education Level_School 1 Internet Type_Mobile Data 1 

Education Level_University 0 Internet Type_Wifi 1 

Institution Type_Government 0 Network Type_2G 0 

Institution Type_Non Government 1 Network Type_3G 1 

Self Lms_No 0 Network Type_4G 1 

Self Lms_Yes 1 Class Duration_0 0 

Device_Computer 1 Class Duration_1-3 0 

Device_Mobile 0 Class Duration_3-6 1 

Device_Tab 0     
Table 4: Dataset description using ANCHOR 
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Figure 8:Anchor Visualization 

The Anchor XAI method generates visual output 

that offers a perceptive explanation of the features 

that influence the model's prediction on the 

dataset. The "Anchor Explanation Visualisation" 

bar chart emphasises the features that are included 

in the anchor and have a value of 1, which 

indicates their importance in the prediction. 

Conversely, features with a value of 0 are 

excluded, which indicates their lack of influence. 

The model's predictions are significantly 

influenced by features such as "Gender_Boy," 

"Class Duration_3-6," "Internet Type_Mobile 

Data," "Financial Condition_Rich," and "Financial 

Condition_Poor," as evidenced by the 

visualisation. The anchor set underscores the 

significance of these features, as evidenced by 

their value of 1. The presence of both "Financial 

Condition_Rich" and "Financial Condition_Poor" 

indicates that the model regards the financial status 

of pupils as a critical factor, regardless of whether 

it falls within the upper or lower echelon of the 

spectrum. Other notable features include "Network 

Type_3G" and "Network Type_4G," which suggest 

that the type of network connectivity is a critical 

factor in determining the adaptability of students 

to online education. The anchor set's inclusion of 

"IT Student_Yes" further emphasises the 

importance of students' information technology 

backgrounds, which may aid in their adaptability.

 

 

Authors Method Results 

Smith et al. (2022)[14] Random Forest 85 

Johnson and Wang (2021)[32] Neural networks 88 
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Kumar et al. (2020)[28] Ensemble learning 86 

Lee and Chen (2019)[33] RNN, CNN 90 

Brown et al. (2018)[15] logistic regression, SVM 81 

Garcia et al. (2017)[18] Gradient Boosting Machines 87 

Martinez et al. (2016)[19] Naive Bayes 78 

Proposed Method XAI 93 

Taylor et al. (2015)[17] Decision trees 82 

Williams and Clark (2014)[31] Ensemble methods 89 

Nguyen and Do (2013)[27] Deep learning models (DNN) 91 

Table 5 : Comparison of the model with existing literatures 

Conversely, the anchor set excludes features such 

as "Class Duration_0," "Device_Mobile," "Load-

shedding_High," and "Institution 

Type_Government," which have a value of 0. This 

implies that the model's prediction process is not 

as influenced by these factors. The exclusion of 

"Institution Type_Government" may suggest that 

the adaptability levels of students in the context of 

this study are not substantially influenced by the 

type of institution, whether it is government or 

non-government. By including features such as 

"Age_6-10," "Education Level_School," and "Self 

Lms_Yes," the model emphasises its assessment of 

the diverse factors that influence student 

adaptability. The model's robust and reliable 

prediction framework is guaranteed by this 

multifaceted approach, which takes into account a 

variety of factors. The Anchor XAI method 

effectively reveals the critical features that drive 

the model's predictions, thereby providing 

interpretability and transparency. This level of 

detail is indispensable for educators and 

policymakers, as it allows them to comprehend the 

primary factors that influence student adaptability 

to online education. Ultimately, the educational 

experience and outcomes of students can be 

improved by incorporating targeted interventions 

and support mechanisms, which are informed by 

these insights. 

Conclusion 

In order to predict how well students will adjust to 

online learning, the study presented an Enhanced 

Hybrid Explainable AI (XAI) model. To increase 

prediction accuracy, the strategy integrated XAI 

methodologies with ML and DL techniques, 

including ensemble methods like bagging, 

boosting, and stacking. For educational 

stakeholders to have faith in and make good use of 

the predictions, it is crucial that the models be 

transparent and easily interpretable. XAI 

approaches like SHAP, LIME, and attention 

mechanisms ensured this. Among the models 

tested, RandomForest performed best across all 

three levels of adaptability (High, Low, and 

Moderate) in terms of precision, recall, and F1-

score. Specifically, the F1-score varied between 

0.87 and 0.92, recall between 0.85 and 0.93, and 

precision between 0.88 and 0.93 for the model. 

Although their performance was marginally lower 

than RandomForest, other models including 

Gradient Boosting, CatBoost, and XGBoost all 

showed strong performance. These results 

demonstrate that the suggested hybrid model is 

reliable and robust when it comes to predicting 

student adaptation.  

The study's substantial contributions include the 

creation of a model that effectively balances the 

necessity for transparency in educational 

environments with the high accuracy of its 

predictions. In addition to demystifying the AI's 

decision-making process, the incorporation of XAI 

techniques also provided actionable insights into 

the factors that influence students' adaptability. 

Significant contributors to the predictions were 

identified as features such as class duration, 

institution type, network type, and financial 

condition.  
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Future Scope 

The outcomes of this study should inform future 

research in various areas. A more diversified 

dataset of students from other areas and 

educational systems might improve the model's 

generalizability and resilience. Longitudinal 

studies of student adaptation across time and 

across educational stages may reveal how 

adaptability develops and what interventions work 

best. Optimizing the hybrid model with more ML, 

DL, and ensemble methods may improve 

prediction accuracy and efficiency. Future research 

can improve predictive models' application and 

impact in online education, allowing institutions to 

give more effective, personalized help to students. 
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