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ABSTRACT  

This paper discusses the estimation of parameters in the zero-inflated Negative Binomial (ZINB) 

model by the method of moments and maximum likelihood estimation. The method of moments 

estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs).  
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1.  Introduction 

In the recent period, enormous research activity has been observed in generalizing of the standard 

discrete distribution.  The important idea was to apply the comprehensive versions for modeling 

different kinds of dependent count data structure in various fields of traffic, insurance, health, 

engineering, medical, public, manufacturing, road safety, epidemiology, sociology, economic, 

agriculture, etc.,  

 

The ZINB model is introduced in this section in the context of a practical situation. Maximum 

likelihood estimation of the parameters involved in the model is discussed in Section 2. The ZINB 

model is shown to be a member of the two-parameter exponential family in section 3 and hence the 

asymptotic normality of the MMEs is established in section 4. Further, in Section 5, the details of 

computing the Fisher information matrix corresponding to this model are shown. In Section 6 the 

MMEs and the MLEs are asymptotically compared.  

 

A random variable X is said to have a zero-inflated Negative Binomial distribution, if its probability 

mass function (p.m.f) is given by 
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Thus, the distribution of X is a convex combination of a distribution degenerate at zero and a 

Negative Binomial distribution and the parameter “r” is assumed to be known. 

 

2. Maximum Likelihood Estimation 

Let X = (X1, X2, X3, ···, Xn) be a random sample on X with the p.m.f. specified in (1.1). Then the 

likelihood function is given by 
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Since the above likelihood function does not yield closed form expressions for the maximum 

likelihood estimators (MLEs) of  and φ. 

2.1 EM Algorithm 

When the likelihood function has a complicated structure and maximizing it by numerical 

methods is difficult, a simple alternative procedure is the EM-algorithm developed by Dempster et al.  

The adaptation of the EM algorithm is discussed for computing the ML estimates of q and j in 

p(x,q,j) specified in (1.1).  The EM algorithm is an iterative procedure to compute the MLEs of the 

parameters involved in a model when the likelihood equations do not admit closed form solutions. 

There are E- and M-steps at each of the iteration. To implement the EM algorithm the likelihood has 

to be rewritten so as to accommodate missing data.  

Let Zj = 0 or 1 according as the jth observed leaf is unsuitable or suitable. If Xj> 0, then Zj = 1. 

On the other hand, when Xj = 0, then Zj = 0 or 1. Therefore   0: =jj XZ  becomes the set of missing 

observations.  When (X1, X2, . . . , Xn) is augmented with (Z1, Z2, . . . , Zn), ((X1,Z1), (X2,Z2), . . . , 

(Xn,Zn))becomes the complete data set.  

The likelihood function of the complete data is given by 
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In the E-step, the expectation of the likelihood function of the complete data is taken and E(Zj) is 

replaced by the conditional Expectation E(Zj|θo, φo, Xj = 0), where   o and φo  are respectively the 

initial estimates of   and φ. In the M-step, E[Lc( ,φ|x, u)]  is maximized with respect to   and φ.  If 

 1and φ1 are the values of  and φ which maximize E[Lc( ,φ|x, u)], then the E-step is repeated using 

 1 and φ1. 

The computational details of these steps can be summarized as follows:  
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Where, ng and no are respectively the number of observations greater than zero and equal to zero.  

d) Repeat the steps b) and c) by fixing  o =  1 and φo = φ1. 

 A reasonable initial estimate of φ is no/n and the ratio of sample mean to sample variance can 

be taken as an initial estimate of . If  
=1nn  and  

=1nn  are respectively the sequence of iterates of 

the estimates of   and φ and they converge, then their limits are the MLEs of   and φ.  

 

3. Two Parameter Exponential Family 

In this section, along the lines of Kale (1998) we show that the zero-inflated power series model 

belongs to two parameter exponential family. 

 

The probability mass function specified in (1.1) can be written as 
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Taking log on both sides to (3.1)  
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On simplification we get, 
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Which is the general form of two parameter exponential family. Hence the zero-inflated negative 

binomial model belongs to two parameter exponential family and thus 
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4. Method of Moment Estimators 

In zero-inflated negative binomial model specified in (1.1), we get first and second moments  
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When X= (X1, X2, X3, . . . , Xn) is a random sample on X, the moment estimators of   and φ are given 

by the simultaneous equations 
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Since the ZINB model belongs to two parameter exponential family and the MMEs are based on these 

minimal sufficient statistics for the parameters θ and φ,   
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5.  Fisher information matrix  

Taking log on both sides to (1.1)
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We get the following partial derivatives: 
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Further, we get  
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Therefore, the Fisher information matrix becomes 
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By using equation (5.1) to (5.5) we get the Fisher information matrix
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The inverse of the above Fisher information matrix (5.6) is the variance co-variance matrix of MLEs 

of the parameters. 
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      (5.7) 

 

Where, 

 

∑11
−1 =  

(1 − 𝜑){(𝑟(1 − 𝜃) + 𝜃2)(𝜑 + (1 − 𝜑)𝜃𝑟) − 𝜑(1 − 𝜃)𝑟2𝜃𝑟}

(1 − 𝜃𝑟)(𝑟(1 − 𝜃) + 𝜃2) −
(1−𝜃)𝑟2𝜃𝑟(𝜑(1−𝜃𝑟)+𝜃𝑟)

(𝜑+(1−𝜑)𝜃𝑟)

 

 

 

∑21
−1 = ∑12

−1 =  
−𝑟(1 − 𝜃)𝜃𝑟+1

(1 − 𝜃𝑟)(𝑟(1 − 𝜃) + 𝜃2) −
(1−𝜃)𝑟2𝜃𝑟(𝜑(1−𝜃𝑟)+𝜃𝑟)

(𝜑+(1−𝜑)𝜃𝑟)

 

 

∑22
−1 =  

𝜃2(1 − 𝜃)

(1 − 𝜑)(𝑟(1 − 𝜃) + 𝜃2) −
(1−𝜃)𝑟2𝜃𝑟(𝜑(1−𝜃𝑟)+𝜃𝑟)

(𝜑+(1−𝜑)𝜃𝑟)(1−𝜃𝑟)

 

 

 

Asymptotic relative efficiency of MLEs over MMEs of the parameters has been presented in the next 

section. 

 

6. Asymptotic Relative Efficiency 

An empirical comparison of MLEs and MMEs of the parameters in a ZIP model is made by Nanjundan, 

Loganathan and Raveendra Naika [2009]. The relative efficiency (ARE) of MMEs with respect to 

MLEsof the parameters are compared analytically in case of ZIP model [see Nanjundan and Raveendra 

Naika [2012]. The MLEs of the parameters q and jin ZINB model do not yield closed form expressions 

but MMEs are obtained closed form expressions. According to section 3 the estimators of the 

parameters are asymptotically normally distribution. Hence the asymptotic relative efficiencies of the 

estimators are compared analytically. Since the zero inflated negative binomial distribution (1.1) 

belongs to two parameter exponential family, the MLEs of q and j are also asymptotically normal 
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Hence the asymptotic relative efficiency of mme̂ with respect to mle̂ is  

)(

)(
)ˆ,ˆ(

mle

mme
mmemle

AV

AV
ARE




 =

 

     = 1. 

Therefore, the MMEs and the MLEs of q are asymptotically equally efficient. The same is true in the 

case of j too. 

 

7.  Conclusion and Discussion  

The MLEs of the parameters in the ZINB model have no closed form expressions and computing them 

even by the EM algorithm needs computer facility. Whereas the MMEs have simple closed form 

expressions and they can be computed easily without computer assistance. The MMEs and the MLEs 

are asymptotically equally efficient. Hence MMEs can be used instead of the MLEs when the sample 

size is sufficiently large. 
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