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ABSTRACT: Prosumers' participation in demand-response programs is essential to the success of 

demand-side management in renewable energy infrastructure. People's concerns regarding the 

confidentiality of their personal energy data used for forecasting continue to act as a barrier to wider 

adoption of the technology. In this piece, we explore how blockchain-based distributed federated learning 

(FL) might be used to forecast future energy needs. This approach utilizes FL and blockchain technology to 

ensure the confidentiality and security of client energy data. Only the weights of locally learnt models are 

transmitted using the blockchain. Edge prosumer nodes are where sensitive energy data is stored. The 

worldwide federated technique assures that parameters cannot be modified and can be traced back to their 

original source by transferring and copying data over the blockchain overlay. We proposed using smart 

contracts to integrate local machine-learning prediction models with the blockchain, establish scaling 

functions for model parameters, and reduce network overhead. We use a multi-layer perceptron model and 

data from prosumers to evaluate centralized, local-edge, and blockchain-integrated algorithms for 

anticipating energy consumption 24 hours in advance. Even though centralized learning is superior at 

prediction, blockchain-based distributed FL that consistently protects user data is only marginally less 

accurate.    

Keywords: energy prediction; federated learning; blockchain; smart grid management; demand 

response; smart contracts; machine learning 

1.INTRODUCTION 

 

The energy grid is decentralizing as intermittent 

renewable energy sources and energy storage 

proliferate at the system's periphery. Using 

demand-side management, an area may be 

better able to deal with energy fluctuations. It 

regulates electricity consumption via load 

scheduling performed by prosumers. Some 

examples are converters for electric vehicles, 

programmable thermostats, and smart home 

equipment. The effectiveness of a demand-

response (DR) program is contingent on two 

factors: the number of people using the program 

and the expected daily energy consumption. For 

load-flexibility solutions to reliably deliver set 

points to many assets over an extended period 

of time, multiple energy prediction phases are 

required. Renewable energy sources have an 

inconsistent production, and the demand from 

smaller customers fluctuates often, making it 

difficult to predict future energy consumption. 

Currently, accurate one-step-ahead is used by 

the vast majority of energy prediction 
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algorithms. When considering longer time 

periods, DR becomes significantly less precise. 

In the Internet of Things, smart energy meters 

produce vast amounts of data. Because of this, 

energy firms utilize cloud-based data storage, 

big data, and machine learning to forecast 

future energy consumption and output. Model 

uncertainty is reduced and forecast accuracy is 

improved by considering many temporal and 

energy scales (individuals, communities, etc.). 

 

 
Figure1.Learning includes swarm (blockchain-

based distributed FL), centralized, and 

federated. 

 

Using extensive data about prosumers, deep 

learning models are trained to make predictions 

about the future. Models predict energy use and 

deliver messages to the running software to 

adjust the prediction (Figure 1a). 

Combining energy characteristics with 

contextual variables, such as behavioral or 

social elements, non-energy vectors and 

features, makes it easier to create reliable 

predictions. Although the cloud-based scenario 

is more likely to occur, it raises privacy 

concerns. People don't participate in many DR 

projects because they're concerned about the 

security of their personal information. 

Researchers are exploring on measures to 

preserve privacy while tracking energy use, as 

this has caused several European countries to 

delay implementing smart meters and left 

consumers and families powerless to aid in DR. 

There have been initiatives to ensure secure 

two-way communication between utilities and 

prosumers, but centralization raises privacy 

concerns for users' data. Privacy-based ML is 

essential for energy forecasting because of the 

General Data Protection Regulation (GDPR) in 

Europe. Decentralized prediction is simplified 

by FL infrastructures that safeguard personal 

information (Figure 1b). The prosumer edge 

node archives information in order to preserve 

confidentiality and prevent leaks. Edge node 

data is used to update the global model, while 

prosumer websites are mined for local ML 

model training. At this time, only model 

parameters are being transmitted, and no 

personally identifiable data. When energy data 

is stored locally rather being transmitted across 

the network, latency and bandwidth costs are 

reduced, and prediction accuracy is enhanced. 

Distributed ledger technology's transparency 

and user-friendliness can boost the authority of 

DR program oversight. Data provenance allows 

for a complete audit trail of all modifications 

made to any given link in the chain. 

Imperceptible chain information is immune to 

tampering by third parties. These characteristics 

ought to characterize distributed machine 

learning. The global FL case model can be kept 

in a distributed ledger accessible to the public. 

Customers get trust and comprehension as a 

result. Since data once stored cannot be altered, 

fraud is reduced. The public blockchain records 

updates to the global federated model. 

New approaches to data privacy and trust 

protection using FL models and blockchain 

technology are emerging (Figure 1c), but they 

do not yet account for the energy needs of 

prosumers. We employ machine learning to 

anticipate the energy needs of local prosumers, 

while the blockchain records and updates the 

global energy forecast model. People replicate 

model parameters, update the federated model, 

and onboard new prosumers all through the 

usage of public blockchains. Participation from 

prosumers is facilitated by the elimination of 

concerns over data ownership and 

confidentiality thanks to the combination of 

public blockchain integration and state change 

model tracking. 

An anonymous prediction of future energy 

consumption can be made via a blockchain-

based distributed FL for energy. Global model 

parameters that cannot be modified are recorded 

and broadcast via a blockchain network 
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overlay. 

Regression-based energy forecast becomes 

more difficult as prosumer size and blockchain 

transaction cost scale, therefore smart contracts 

update global model parameters to account for 

these changes. 

We evaluate the MLP models used to predict 

energy consumption by prosumers in three 

distinct environments: the distributed cloud, the 

local edge, and the blockchain. 

Distributed methods of machine learning aim to 

improve both these aspects. FL solutions 

provide only a minimal measure of 

confidentiality. Centralized learning models 

might become vulnerable to attacks because of 

their centralization. Blockchain, FL, and 

distributed optimization are used to fix the 

smart grid's credibility, privacy, and security 

flaws. The remainder of this article will focus 

on FL solutions for smart energy grid security 

and distributed optimization methods. The 

advantages of distributed FL methods built on 

the blockchain over more conventional models 

are then discussed. 

Their FL model revolutionized the field with 

"one-shot parameter averaging" via 

simultaneous stochastic gradient descent 

(SGD). The proposed architecture required one 

last communication round to generate the main 

model after the slow SGD optimizer was used 

to educate local models. The distribution of data 

among nodes and the averaging of a single 

parameter were not taken into account by other 

machine learning approaches. SVM, sparse 

logistic regression, basis pursuit, covariance 

selection, and distributed convex optimization 

using alternating direction multipliers on the 

lasso are all explored in Boyd and his team's 

work. Convergence was found to be less 

common while using longer communication 

cycles. Distributed Approximate Newton 

(DANE) by Shamir et al. finds a solution with 

fewer communication rounds due to the 

similarities between computer problems. 

Konecn et al. developed FL, a centralized 

technique for training models. Instead of 

sending data samples to other nodes, it 

leverages data stored locally. Convergence and 

communication times were modified to strike a 

better balance between security and 

transparency of data. McMahan et al.'s research 

analyzed simple methods for training FL 

models. FedSGD averages local node gradients 

during the entire learning process, whereas 

FedAvg only does so once all clients have 

computed their local models. Zhu et al. claim 

that using non-IID training data from 

neighboring nodes significantly reduces 

accuracy. Users' privacy was compromised 

because many systems failed to relay 

information to all nodes. The FedAvg and 

FedSGD algorithms have been the subject of 

article suggestions for improvement. 

Connecting gadgets, seeing patterns in data, and 

learning to work together are all high on their 

list of priorities. While FedDACNE is 

theoretically superior, FedProx performs better 

in practice. Convergence to the average is 

enhanced by the proximal approximation in 

FedProx, as demonstrated by Li et al. Yang et 

al. investigate what happens to a wireless FL 

configuration when the network is linked and 

there is latency in an effort to determine the 

optimum strategy to spend energy efficiently 

while keeping latency restrictions. Uddin et al. 

demonstrate the convergence of mutual 

information-based FL solutions on clinical 

datasets. The authors refined their approach by 

considering the concept of a "information 

bottleneck" and a "Lagrangian loss function." 

FL is an expert in managing complex energy 

networks. Data privacy and security are 

addressed via FL solutions. Data about users is 

often stored in insecure centralized databases, 

which might compromise confidentiality. In 

order to employ FL approaches for smart grid 

activities like estimating energy use and 

discovering patterns among prosumers, it is 

necessary to install smart meters in areas where 

prosumers are situated. Li and his group have 

identified six different business sectors that 

could benefit from FL software. Su et al. 

investigate smart grids with decentralized deep 

learning, and Husnoo et al. employ FL to 

forecast prosumer energy consumption. The 

LSTM and FedAvg neural networks were used 
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to complete the task. The FL smart grid 

demonstrated by Singh et al. is server-less and 

produces reliable results. As their FL technique 

of choice, Tak et al. opted upon LSTM. Even 

after several iterations of transmission, 

outcomes were often inaccurate without 

consumer clustering. In order to hasten 

convergence, Gholizadeh et al. (who studied 

FL) devised a novel method based on clustering 

processes. For smart grid prosumers to transmit 

data without incurring IID fines, Su et al. 

propose a secure floating-point (FL) approach. 

The best outcomes and most understandable 

dialogue emerge from training a two-layer deep 

reinforcement learning system. Wang et al. 

argue that FL should be integrated with smart 

meters and consumer-to-consumer social 

aspects. Saputra et al. made educated guesses 

about the energy consumption of EVs by 

employing FL design. By avoiding information 

exchange with the service provider, the 

charging station can cut down on operational 

expenses. 

Improving the precision of predictions. A FL 

framework for trend-learning-based power data 

security in energy networks is described by Liu 

et al. Vertical and horizontal FL are utilized in 

this technique. 

Because intrusions put the learning model and 

data transfer at risk, there needs to be a balance 

between security and decentralization. Usynin 

and his colleagues face a model inversion 

danger when an attacker dismantles the 

federated model and exchanges training data. 

Gradient-based techniques allow adversaries to 

view visual data, but they also provide 

safeguards. Data breaches can be avoided with 

Song et al.'s successful privacy-preserving data 

aggregation method since it connects weights 

without disclosing models. Even if many users 

abandon the search due to communication 

difficulties, a suitable model can be located. 

Data security was ensured by the use of 

poisoned FL designs by Ganjoo et al. and FL 

encryption methods by Liu et al. Ma et al. 

propose a method to counter FL-based 

Byzantine attacks. Gradient aggregation using a 

two-party calculation protocol is fast, secure, 

and private. Multi-party computation and 

Paillier's additive homomorphism are used by 

some to provide privacy and security. In the 

social Internet of Vehicles, Zhao et al. 

established key exchanges for the purposes of 

identity authentication and data encryption.  

Model extraction, poisoning assaults, and 

member incentives to comment on their own 

resources and local results are just some of the 

privacy and security challenges that Hou et al. 

discuss in their conclusion on FL. The current 

FL directions are listed in Table 

1.2.RELATEDWORK 

Distributed ML techniques aim to improve 

learning and privacy. FL solutions only provide 

limited privacy and security. Centralised 

learning models can be attacked and become a 

single point of failure. Blockchain, FL, and 

distributed optimization address smart energy 

grid security, trust, and privacy leakage. The 

rest of this section discusses distributed 

optimization algorithms and smart energy grid 

security in FL solutions. Next, blockchain-

based distributed FL methods and their 

advantages over classic FL models are 

examined. 

Zinkevich et al.'s breakthrough FL model was 

their "one-shot parameter averaging" 

decentralized ML model based on parallel 

stochastic gradient descent (SGD). The 

suggested architecture used the SGD optimizer 

to train local models and a single final 

communication round to build the central 

model, which is not ideal. ML systems other 

than SVM ignored data distribution between 

nodes and one-shot parameter averaging. 

Distributed convex optimization is tested by 

Boyd et al. using alternating direction 

multipliers on the lasso, sparse logistic 

regression, basis pursuit, covariance selection, 

and SVM. The results demonstrated that 

communication rounds can hinder convergence. 

Distributed Approximate Newton (DANE) by 

Shamir et al. converges in less communication 

rounds by considering computer problem 

similarities. Konecn et al.'s centralized model 

training method FL uses local datasets at local 

nodes without sending data samples. To balance 
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accuracy and data privacy, communication 

rounds and convergence time were optimized. 

McMahan et al. examined fundamental FL 

model training methods. Federated Stochastic 

Gradient Descent (FedSGD) averages local 

node gradients at each learning phase step, 

while FedAvg averages weights after all clients 

compute their local models. Zhu et al. say local 

node non-IID training data can significantly 

reduce accuracy. Several systems did not 

distribute data among nodes, compromising 

privacy. Articles suggest FedAvg and FedSGD 

algorithm improvements. Device 

communication, data heterogeneity correlation, 

and learning convergence are their concerns. 

FedDACNE is more exact theoretically, but 

FedProx outperforms it in practice. Li et al. 

showed that FedProx's proximal approximation 

component increases FedAvg convergence. 

Yang et al. examine how network connectivity 

and latency affect a wireless FL configuration 

in an energy efficiency optimization problem 

with latency limitations. Uddin et al. show 

mutual information-based FL solution 

convergence on clinical datasets. The authors 

improved their method by using the information 

bottleneck concept and a Lagrangian loss 

function. FL can control smart energy grids. FL 

solutions cover data security and privacy. 

Traditional systems store user data in 

centralized databases, compromising privacy 

and security. To apply FL methods to smart 

grid use cases like energy forecasting and 

prosumer pattern categorization, deploy 

distributed smart meters at prosumer sites. Six 

industrial domains are identified by Li and 

colleagues in FL applications. Su et al. study 

smart grids utilizing decentralized deep-

learning, whereas Husnoo et al. predict 

prosumer energy demand using FL. Used 

FedAvg and LSTM neural network. Singh et al. 

propose a dataset-accurate serverless FL smart 

grid. Tak et al. chose LSTM for their FL 

method. Even after multiple transmission 

cycles, accuracy was poor without prosumer 

clustering. Gholizadeh et al. assessed FL and 

proposed a novel clustering method to 

accelerate convergence. Su et al. propose a 

secure FL mechanism for smart grid prosumers 

to send data without IID repercussions. 

Training a two-layer deep reinforcement 

learning system yields promising results and 

efficient communication. Wang et al. suggest 

connecting smart meters and prosumer social 

features with FL. Saputra et al. forecast EV 

energy needs using FL design. The solution lets 

the charging station avoid sharing data with the 

service provider, reducing communication 

expenses. 

Making predictions more accurate. Liu et al. 

offer a FL framework for energy network 

power data security and use trend learning. The 

method uses horizontal and vertical FL. 

Cyberattacks threaten the learning model and 

data dissemination, therefore security and 

decentralization must be balanced. Usynin et al. 

handle model inversion threats, when an 

attacker reverse-engineers the federated model 

and leaks training data. Gradient-based methods 

reveal picture data to attackers and show 

mitigation. The successful privacy-preserving 

data aggregation method by Song et al. 

connects weights without revealing models, 

reducing data leaks. The technique can 

calculate a suitable model even when many 

users disconnect due to communication issues. 

Ganjoo et al. poisoned FL designs and Liu et al. 

encrypted FL systems to protect data. Ma et al. 

present a FL-based Byzantine attack solution. A 

two-party calculation protocol implements safe, 

efficient, and privacy-preserving gradient 

aggregation. Others use multi-party computing 

and Paillier's additive homomorphism for 

privacy and security. For social Internet of 

Vehicles authentication and data encryption, 

Zhao et al. use key exchanges.  Hou et al. 

conclude by reviewing FL security and privacy 

challenges such model extraction, poisoning 

assaults, and incentives for members to 

comment on their resources and local findings. 

FL's current directions are in Table 1. 

Table1.The importance of Florida's smart grid.. 
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FL and blockchain will address issues of model 

centralization, trustworthiness, and data 

privacy. Very few methods were documented. 

Warnat-Herresthal et al.'s FL system 

architecture does not rely on a single point of 

coordination. A distributed smart contract 

handles some model activities, such as 

averaging and weight distribution. This method 

increases security because all clients may verify 

the validity of the master model and track its 

evolution in real time. We analyzed the IID's 

use of clinical data to categorize illnesses. 

Few studies have considered the need of 

protecting user data, centralizing learning 

models, and preventing unauthorized changes in 

smart grid ML-based FL and energy demand 

prediction applications. This research proposes 

a blockchain-based distributed FL energy-

demand forecasting approach to improve the 

field by protecting energy consumers' personal 

information. Only the weight of the local model 

that has been trained is transmitted to the 

blockchain; all other sensitive energy data 

remains at the edge prosumer nodes. Since the 

global model is replicated over the blockchain, 

it is impossible to alter it. As a result, 

understanding the impact of prosumer behavior 

is impossible. 

3.SMARTCONTRACTSFORFEDERA

TEDLEARNING 

 

Private information about energy consumption 

is stored on prosumer nodes. After users have 

trained a local machine learning (ML) model, 

smart contracts on a blockchain network will 

update the global model. 

Consumer machine learning will be used to 

discover the vector-dependent function w: Rp 

R. 

In RP, weights are simply weights. We will use 

n pairs of datapoints (xi, yi) to train the model 

w, where xiR are time-stamped feature vectors 

and yiR are meter-read energy values. As can 

be seen in Figure 2, the FL technique employs a 

network of k nodes to hone in on the global 

model function w. Separate sets of k energy 

datapoints (ni n, i 1..k, and i ni = n) are 

generated. FL estimates the amount of energy 

consumed by prosumers. 

 
Figure2.FL estimates prosumers' energy needs. 

Each of k energy consumer edge nodes trains the 

models locally, yielding parameter vectors wi that 

minimize prediction error: 

 
 

Finding the optimal weight vector is a goal for 

each edge node i. 

To reduce local prediction error, a centralized 

node uses a federated model function and local 

model parameters to generate a weight vector wF. 

The weight vector wF of the federated model is 

typically calculated by a function by adding the 

weights of the edge models. The federated weight 

vector can be modified in two distinct ways. 

Using SGD to obtain the mean of the edge node 

weight vectors is the first approach, which 

modifies the global model weights. Next, DANE 

modifies the federated weight by averaging the 

gradients of the local weights [40,41]. The 

average gradient of the edge model is used to 

make adjustments to the weight vector at various 

phases. 

In federated machine learning optimization, the k-

edge energy data plays a crucial role. 

Prosumers are shown by dots in Figure 3. A 

weight vector is delivered to the edge consumer 
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nodes to kick off the global model. The 

improvement in the federated weight vector wF 

after many runs of s is displayed in lines 4-9. 

Local gradients are gathered, a global gradient is 

computed, federated weights are updated, and a 

new round of local model training is initiated by 

sending the weight vector ws to the edge nodes. 

The weight vector from the federated model keeps 

being returned by the program. 

 
Figure3.Energy forecast for prosumers. 

 

Our federated prosumer energy prediction 

technique utilizes blockchain and smart contracts 

to ensure that the global ML model is always 

accurate (Figure 4). We employ smart contracts to 

share on the blockchain the weight vectors used in 

local energy forecast models. The following step 

is to encrypt the model and then store it on the 

blockchain. Simultaneously, all of the network 

overlay nodes receive a copy of the local model's 

weight.

 
Figure4.Energy forecasting for prosumers 

utilizing distributed blockchain FL. 

Smart contracts on the blockchain network 

overlay control the energy demand prediction 

weights vector for the global shared ML model. 

Each learning node is equipped with the 

addresses of the contracts that modify the 

global model's weights. The second table 

illustrates the relationship between the key 

functions of smart contracts and FL levels. 

Since acquire functions do not alter the current 

state of the contract, participants will not be 

compensated for asking about the central 

weight.

 
 

Figure 5 depicts the impact of smart contracts 

on the relative importance of different global 

modes. Due to mapping restrictions, we were 

only able to log the addresses of ultra-

peripheral prosumer accounts and Present 

accounts. To make a modification to 

globalModelWeights, it is essential to take an 

average of localModelWeights, which stores the 

weights for edge accounts. After calling "update 

Global Model," the globalModelWeights are 

reset, and a loop iteratively processes all of the 

prosumer accounts, appending each local 

weight vector to its proper place and averaging 

the global weights by the number of edge node 

participants.

Figure5Smart contracts update global energy-

demand prediction model weights. 
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Smart contracts are activated by nodes at the 

smart grid's consumer edge (Table 2). Figure 6 

depicts the pseudocode for the function used to 

maintain local ML models. Edge nodes must be 

in sync with each other to prevent model update 

mistakes during interaction cycles (local or 

global model update), such as when local model 

weights are adjusted and global model updates 

are broadcast to the blockchain. We 

synchronize the timestamps on edge nodes to 

provide benchmarks for the training iteration. 

Each training cycle will have a time constraint 

for retrieving global model weights from the 

blockchain and transmitting local model 

weights. Edge node local weights are 

considered here; in other contexts, they are 

disregarded. 

First, make sure the start and end dates are in 

sync with other training edge prosumer nodes 

by setting the time zone (lines 5-6). Node (lines 

8-12) iteratively trains local model using 

blockchain weights using local data. When the 

post milestone is reached in the local timezone, 

the smart contracts will upload the local 

weights vector ws to the blockchain. When the 

current local time reaches the get milestone 

(lines 10 and 11), a request is sent to the 

blockchain for a new weight vector to be used 

in the construction of the next local model. 

 
Figure6.Updated ML models reach edge 

prosumer nodes. 

4.EVALUATIONRESULTS 

 

Prosumers' energy consumption data was 

collected through our platform for use in 

validating the blockchain-based energy-demand 

forecast. Each prosumer is provided with a power 

meter that communicates via the International 

Electrotechnical Commission's (IEC) 62056 

protocol, as well as an HTTP-based power quality 

analyzer. The meters update their local data model 

with the information they communicate over 

MQTT every five seconds. 

Data from 15-minute energy readings were 

compiled for five months. Twenty-four energy 

values, or one value for each hour, are utilized to 

predict what individuals will wish to buy the next 

day. Because prosumers' energy consumption 

might vary greatly, a clustering technique is 

utilized to identify individuals with comparable 

peak energy demands. Prosumer monitoring edge 

devices do not collect energy data that complies 

with the IID standard. Furthermore, their 

consumption habits may vary. Therefore, in the 

first four months, each local model was trained on 

random samples of data from energy meters, 

validated using 10% of data, and tested with data 

from the next month. 

Local prediction at each prosumer edge node is 

handled by a fully-connected MLP and 

feedforward neural network. Many MLP 

configurations were trained and examined to 

determine the learning meta-parameters (weight 

vector). Each iteration consisted of one epoch 

since FedAvg averages the local model weights at 

regular intervals. Through testing, we were able to 

determine how often an optimal average should be 

calculated. Meta-parameters such as the number 

of hidden layers, neurons, and learning rate were 

also altered. Our strategy for selecting features 

relied heavily on the current date and time in 

addition to the total quantity of energy consumed. 

The MLP model for predicting energy has a single 

hidden layer of 30 neurons. In addition, the output 

layer and rectified linear units (ReLu) are both 

active (Table 3). We employed a 32-stage He 

uniform-variance scaling initializer in conjunction 

with a minimum squared error (MSE) loss 

function and a random gradient descent (RGD) 

approach. Our optimal model required 26 inputs: 

24 hours of energy data from the previous day, 

one weekday, and a Boolean value indicating 
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whether or not the expected day was a weekend. 

Each time before a round, 

The input data was normalized in the range [1, 1] 

using a min-max scaler before being fed into the 

network. Applying the inverse scaling function 

after each prediction will produce fewer typical 

outcomes. 

Table3.Local energy prediction model MLP 

configuration. 

 
 

To keep the global machine learning model up-to-

date, smart contracts were developed on a private 

Ethereum blockchain using Solidity to 

communicate with the blockchain. Because of its 

compatibility with Turing-complete programming 

languages like Solidity, Ethereum was selected as 

the platform for smart contracts. The user can also 

modify other aspects of the chain, including as the 

consensus algorithm, the number of blocks per 

minute, the size of each block, the cost of gas, and 

more. 

Models of regional nodes in the prosumer value 

chain were built with Keras. Through a Node.js- 

and web3-based blockchain API, the smart 

contract and edge prosumer nodes were able to 

communicate with one another. Each edge 

prosumer node has its own encrypted blockchain 

account and can process HTTP GET and POST 

requests. Edge prosumer nodes retrieve the central 

model weights from the blockchain at the 

beginning of each iteration, train the model, and 

then release the weights for their local area. 

The starting weights of the global model and the 

weights of the edge prosumer nodes are stored in 

an array and a map, respectively.   To reduce 

unnecessary blockchain overhead, we stored the 

weights of local prediction models in one-

dimensional arrays and made updates available at 

the edge prosumer node. The edge prosumer node 

must compress the local model weights array 

before adding it to the smart contract. The weights 

array from the smart contract must be converted 

from a 1D array to a Keras model before the edge 

prosumer device may utilize it to re-create a 

model (Figure 7).

 
Figure7.Keras model integration simplifies smart 

contracts. 

 

We compared the accuracy of predictions made by 

centralized learning, edge learning, and distributed 

FL using IID data for energy use by prosumers. 

Centralized learning incorporated all the data from 

the edge prosumer nodes into a single global 

model. Figure 8 depicts the optimal results 

achieved by a model with a single hidden layer of 

35 neurons, an SGD optimizer with a learning rate 

of 0.90, and 128 batches trained for 1100 epochs. 

It turns out that this method of learning provides 

the highest accuracy (smallest MAD). 

 
 

Figure8.(a)Trainingcentralmodelon2000epochs(after

1100epochstheimprovementsareminimal); 

(b)CentralizedlearningMAPE;(c)Energyprediction

resultsforaprosumer. 

Each consumer node at the edge trains its model 

using only local energy data in the local edge 

approach. Nodes never share their model 

parameters or energy data with one another. 

Each node is responsible for keeping its own 

data and optimizing its own local model. 

Finally, we found the average MAPE to display 
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the overall accuracy results and generated a 

graph of the accuracy for each prosumer node. 

Figure 9 demonstrates that some prosumers, 

notably Prosumer 4, generate many errors since 

local datasets aren't significantly diverse from 

one another, despite the fact that the mean 

MAPE is 10.82. 

 
Figure9.(a)EdgelearningMAPE(b)Energypredicti

onforaProsumer#3. 

 

In the local edge technique, prosumer nodes at 

the periphery only use data from their 

immediate vicinity to train their models. Model 

parameters and energy data are not 

communicated between nodes. Local nodes are 

responsible for data collection and model 

tuning. Finally, we found the average MAPE to 

display the accuracy across all prosumer nodes 

in a graph. As can be seen in Figure 9, 

Prosumer #4 causes significant errors even if 

the average MAPE is 10.82. This is because 

there is little variation in local datasets.

 
Figure 10.(Edge learning MAPE and Prosumer 

#3 energy prediction. 

 

Both a blockchain-based distributed FL 

configuration with IID data and one without were 

analyzed. To facilitate joint learning, the IID 

architecture dispersed energy data randomly 

amongst nodes at the periphery of the prosumer 

network (Figure 10). Long training sessions were 

used to determine how many times the learning 

model should be performed by comparing 

validation and train loss. The local energy data at 

the periphery is representative of the entire case 

population of prosumers. While it improves 

forecast accuracy, it cannot compete with 

centralized models. This dispersion of 

information, however, aids the distributed FL 

prediction up to a certain point. 

 
Figure11.(IID data-trained blockchain-based 

distributed FL model accuracy.Prosumer #3 

energy forecast. 

 

The distribution of data is the only way in 

which our model diverges from the distributed 

FL setup with non-IID data. Figure 11 shows 

that the accuracy of a distributed FL model built 

on blockchain technology without IID suffers. 

The average MAPE, on the other hand, is 14.35, 

which is excellent for DR programs and ensures 

the security of prosumers' energy data. This 

strategy may be more effective for prosumers 

with a higher MAPE score. In the local edge 

test, Prosumer No. 4 had the lowest MAPE 

value, but the learning solution improved its 

accuracy. This was due to the fact that the 

distributed learning blockchain model had 

access to a much larger pool of information 

than the local test case data. 

Table4.The accuracy of blockchain-based 

distributed FL models trained with non-IID data; 

(b) Prosumer #3 energy forecast.. 
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Table 4 displays the results of a comparison 

between the test energy data set and the mean 

absolute percentage inaccuracy for each scenario. 

Our learning approach achieves the same 

outcomes as state-of-the-art centralized and local 

trained models without violating privacy 

regulations, even though we adjusted each 

scenario manually. 

Table5.Average prosumer test case MAPE 

findings. 

 
Table 5 shows the average minimum and 

maximum MAPE values for the centralized 

model, which outperformed locally trained models 

due to data variability. 

5.DISCUSSION 

Social and human issues such as privacy, 

households, and community sustainability goals 

are not yet considered in local energy 

management practices. The energy system is 

transitioning toward distributed generation as a 

result of technological and economic 

advancements and ambitious goals set by 

energy regulators. Customers and residents 

don't become involved enough. Due to the 

increasing digitalization of the energy 

infrastructure and the proliferation of new 

energy services, prosumers have less and less 

ability to regulate or monitor the dissemination 

of private information to those involved in 

disaster relief efforts. It's likely that utility 

providers aren't doing a good job of handling 

energy data, leading to a loss of agency for end 

users. This prevents them from engaging in 

energy-related pursuits. Since energy data is 

maintained on prosumer edge nodes and only 

model parameters are communicated, these 

issues may be mitigated by the blockchain-

based distributed FL solution. Safekeeping data 

that complies with GDPR and tracking the 

origin of local machine learning parameters are 

both tasks that can be done with the use of 

blockchain technology. Support for FL 

frameworks is included. 

Concerns and questions remain about how to 

best combine FL with blockchain technology. 

One limitation is that the platform and 

configuration choices affect the processing cost 

of integrating blockchain technology. The 

degree of complexity of the global model is 

influenced by factors such as the number and 

dimensions of edge prosumer node weight 

vectors. Consequently, deploying complicated 

machine learning models on a public 

blockchain is impossible unless at least certain 

parameters in the global model are considered, 

either in a timely fashion or at all. Each 

prosumer can have their own private model 

parameters, eliminating the need for the 

blockchain. 

The cost of the gas required to store the global 

model and power smart contracts might add up 

quickly. Public infrastructure blockchain 

deployment costs could be significantly inflated 

due to the learning convergence time, which 

regulates the frequency of communication 

between edge prosumer devices and smart 

contracts. Therefore, the blockchain-based 

distributed FL design is well-suited for private 

blockchains or low-computing-power networks, 

such as Proof of Stake systems. Inconsistencies 

in the training data could hinder the ability of a 

distributed FL built on the blockchain to 

reliably forecast future energy use. Energy 

consumption and availability among prosumers 

varies widely. It's possible that not all predictors 

are equally well trained and matched when they 

all use the same model. This is common in non-

IID FL models, thus it's important to identify 

them and eliminate them as early as possible in 

the training process. FedProx can help with the 

statistical inconsistency in FL. With so much 

data and processing capacity at their disposal, 

prosumer nodes may perform a wide variety of 

computations locally. 
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In order for our blockchain to function with the 

first wave of prosumers, we propose dividing 

them up into smaller groups (called "clusters") 

and giving each cluster its own set of FL 

models. The scaler needs to function for all 

participants regardless of the classification 

technique employed and whether or not it is 

aware of the energy data samples. Prosumers' 

energy amplitudes were normalized to the range 

from zero to maximum demand because they 

were found to be comparable. Normalized 

values aid model convergence when scaling 

rates for prosumers are not constant. At the end 

of the day, a zero-knowledge proving technique 

can be used to prove that a user is a part of a 

cluster without disclosing any of the cluster's 

information. 

From what we were able to determine, the 

blockchain's local prediction models were 

restricted to customers who had their own 

residences. The guidelines specified that only 

information from approved energy meters be 

used. False weights published by malicious 

actors might reduce confidence in the global 

model and cause havoc for the distributed FL 

process that relies on blockchain technology. 

The issue can be solved by conducting trials 

with prospective edge consumer nodes. If new 

blockchain-based smart contract functionalities 

were developed, validation might be simpler to 

grasp. This could also be done by someone with 

a vested interest in the system, like as the 

Distribution System Operator, who is concerned 

with safety and reliability. The blockchain 

makes it easy to keep track of transactions and 

can identify peers who feed false data into 

learning models. This method can be used in 

conjunction with incentives to motivate 

prosumers to meet consumer demand. 

Incentives can be tied to a person's ability to 

learn and forecast, in addition to their 

flexibility. 

Encourage anybody interested in participating 

in the decentralized learning system for energy 

consumption forecasting to do so. They can 

develop by participating on the blockchain. 

This could speed up the process by which a new 

member adds local energy samples without 

compromising privacy. It will also help new 

participants who don't have trained machine 

learning models anticipate energy more 

accurately. The smart grid scenario could do 

pre-verification on potential users to ensure that 

only authorized individuals gain access. 

Finally, we may try to predict future energy 

demands using local machine learning models 

and privacy economics. Blockchain-based 

model-sharing initiatives may benefit 

businesses and governments alike. The 

blockchain can monitor parameter changes and 

penalize illegal conduct, which is beneficial for 

prosumers who benefit from sharing their 

machine learning models. In a blockchain 

overlay market, edge prosumer nodes might 

earn income by imparting and receiving 

models. The forecast is improved when the 

model's edge consumer nodes are modified. 

Some nodes in the network's periphery receive 

the model and apply it only locally. 

There will be an additional fee for expert 

predictions that do not factor in training data. 

Users of nodes in the periphery can eliminate 

bad nodes by verifying trained models. 

6.CONCLUSIONS AND FUTURE 

WORK 

This study discusses a bl+ockchain-based 

distributed FL solution that enables prosumers 

to forecast their energy consumption and take 

part in grid management initiatives. We 

combine blockchain and the FL model to ensure 

the security of the data used to make estimates 

about future energy demand. Only the model 

parameters are communicated via blockchain to 

the periphery prosumer nodes; the energy data 

is maintained locally. Due to the distributed 

nature of blockchain transactions, the 

parameters of the global federated model are 

kept in a way that is immutable. Local machine 

learning models can be integrated with 

blockchain-specific capabilities through smart 

contracts. This equalizes the data, allows the 

model parameters to expand, and reduces the 

load on the blockchain. The distributed nature 

of the blockchain network makes it impossible 

to alter the global prediction model once it has 

been replicated and distributed. Because of this, 
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inversion assaults targeting prosumer behavior 

are difficult to detect. 

We analyzed the prevalence of centralized, 

decentralized, and regional edge FL ML 

models. The centralized system accurately 

predicts future energy consumption, but at the 

expense of individual privacy. The replacement 

we propose makes no difference in precision. 

Energy providers may put prosumers' minds at 

ease about their data being kept private while 

still providing accurate predictions for using 

DR to its maximum potential. 

To improve the precision of energy forecasts 

for prosumers, we want to implement 

sophisticated deep-learning models like CNN 

and LSTM. We propose to employ novel 

approaches to partially integrate learning 

parameters or model compression to address the 

known issues of modern blockchains, such as 

block size, transaction dimensions, and gas 

usage. We will investigate alternative 

blockchain platforms to the ones now used in 

the energy domain, which only reward energy 

flexibility, in order to get over overhead 

constraints and encourage prosumer learning 

and prediction processes. 

y. 

REFERENCES 

1. Javid,I.;Chauhan,A.;Thappa,S.;Verma,S.K.

;Anand,Y.;Sawhney,A.;Tyagi,V.V.;Anand,

S.Futuristicdecentralizedcleanenergynetwor

ksinviewofinclusive-

economicgrowthandsustainablesociety.J.Clea

n.Prod.2021,309,127304.[CrossRef] 

2. Kumar,R.S.;Raghav,L.P.;Raju,D.K.;Singh,

A.R.Intelligentdemandsidemanagementfor

optimalenergyschedulingofgridconnected

microgrids.Appl.Energy2021,285,116435.[

CrossRef] 

3. Ibrahim, B.; Rabelo, L.; Gutierrez-Franco, 

E.; Clavijo-Buritica, N. Machine Learning 

for Short-Term Load Forecasting in 

SmartGrids.Energies2022,15,8079.[Cross

Ref] 

4. Petrican, T.; Vesa, A.V.; Antal, M.; Pop, 

C.; Cioara, T.; Anghel, I.; Salomie, I. 

Evaluating Forecasting Techniques for 

IntegratingHousehold Energy Prosumers 

into Smart Grids. In Proceedings of the 

2018 IEEE 14th International Conference 

on IntelligentComputer Communication 

and Processing (ICCP), Cluj-Napoca, 

Romania,6–8 September 2018; pp.79–85. 

5. Amasyali,K.;El-

Gohary,N.M.Areviewofdata-

drivenbuildingenergyconsumptionpredictio

nstudies.Renew.Sustain.EnergyRev.2018,8

1Pt1,1192–1205.[CrossRef] 

6. Vesa,A.V.;Cioara,T.;Anghel,I.;Antal,M.;P

op,C.;Iancu,B.;Salomie,I.;Dadarlat,V.T.En

ergyFlexibilityPredictionforDataCenter 

Engagement inDemand 

ResponsePrograms.Sustainability2020, 

12,1417.[CrossRef] 

7. Sha,H.;Xu,P.;Lin,M.;Peng,C.;Dou,Q.Deve

lopmentofamulti-

granularityenergyforecastingtoolkitfordem

andresponsebaselinecalculation.Appl.Ener

gy2021,289,116652.[CrossRef] 

8. Shen,M.;Lu,Y.;Wei,K.H.;Cui,Q. 

Predictionofhouseholdelectricityconsumpti

onandeffectiveness 

ofconcertedinterventionstrategiesbasedono

ccupantbehaviourandpersonalitytraits.Rene

w.Sustain.EnergyRev. 2020,127,109839. 

9. Vigurs,C.;Maidment,C.;Fell,M.;Shipworth,

D.CustomerPrivacyConcernsasaBarriertoS

haringDataaboutEnergyUseinSmart 

LocalEnergySystems:ARapidRealistRevie

w.Energies2021,14,1285.[CrossRef] 

10. Safdarian, A.; Fotuhi-Firuzabad, M.; 

Lehtonen, M. Demand Response from 

Residential Consumers: Potentials, 

Barriers, andSolutions. In Smart Grids and 

Their Communication Systems. Energy 

Systems in Electrical Engineering; Kabalci, 

E., Kabalci, Y., 

Eds.;Springer:Singapore,2019. 

 

 

 

http://doi.org/10.1016/j.jclepro.2021.127304
http://doi.org/10.1016/j.apenergy.2021.116435
http://doi.org/10.3390/en15218079
http://doi.org/10.3390/en15218079
http://doi.org/10.1016/j.rser.2017.04.095
http://doi.org/10.3390/su12041417
http://doi.org/10.1016/j.apenergy.2021.116652
http://doi.org/10.3390/en14051285

