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Abstract:  

This article presents a two-grid approach for developing a black-box iterative solver for a large class 

of real-life problems in continuum mechanics (heat and mass transfer, fluid dynamics, elasticity, 

electromagnetism, and others). The main requirements on this (non-)linear black-box solver are: (1) 

robustness (the lowest number of problem-dependent components), (2) efficiency (close-to-optimal 

algorithmic complexity), and (3) parallelism (a parallel robust algorithm should be faster than the 

fastest sequential one). The basic idea is to use the auxiliary structured grid for more computational 

work, where (non-)linear problems are simpler to solve and to parallelize, i.e., to combine the 

advantages of unstructured and structured grids: simplicity of generation in complex domain 

geometry and opportunity to solve (non-)linear (initial-)boundary value problems by using the 

Robust Multigrid Technique. Topics covered include the description of the two-grid algorithm and 

estimation of their robustness, convergence, algorithmic complexity, and parallelism. Further 

development of modern software for solving real-life problems justifies relevance of the research. 

The proposed two-grid algorithm can be used in black-box parallel software for the reduction in the 

execution time in solving (initial-)boundary value problems. 

 Keywords: mathematical modelling; parallel; high-performance and multigrid computing; black-box 

software; multiphysics simulation; real-life problems 

 

1. Introduction  

Mathematical modelling of physical and chemical processes has always been an important activity in 

science and engineering [1]. Scientists and engineers, however, cannot understand all the details of 

the mathematical models, numerical algorithms, parallel computing technologies, and parallel 

supercomputer architectures. This fact motivates the development of black-box software. Several 

industries, as well as engineering and consulting companies worldwide, use commercially available 

general-purpose CFD codes for the simulation of fluid flow, heat and mass transfer, and combustion 

in aerospace applications (Fluent, Star-CCM+, COMSOL’s CFD Module, Altair’s AcuSolve, and 

others). Also, many universities and research institutes worldwide apply commercial codes, in 

addition to using those developed in house. Today, open-source codes such as OpenFOAM are also 

freely available. Other important issues are the description of complex domain geometries and the 

generation of suitable grids. However, to successfully apply such codes and to interpret the computed 

results, it is necessary to understand the fundamental concepts of computational methods. A 

promising and challenging trend in numerical simulation and scientific computing is to devise a 

single code to handle all problems which already be solved. As a rule, mathematical modelling 

consists of the following stages: 

(1) The formulation of the mathematical model for the studied physical and chemical processes in 

form N (u) = f ; (1)  

(2) The approximation of the space-time continuum (generation of computational grid G);  

(3) The approximation of the differential problems (1) on grid G to obtain a discrete analogue of the 

mathematical model Nh (uh ) = f h ; (2)  
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(4) A numerical solution for the (non-)linear discrete equations uh = N −1 h f h (3) on a sequential or 

parallel computer;  

(5) The visualisation and analysis of computational results. 

Here, N (u) = f denotes a system of (non-)linear PDEs and (initial-)boundary conditions 

(mathematical model), Nh (uh ) = f h denotes the resulting system of (non-)linear algebraic 

Equations (the discrete analogue of the mathematical model), and uh = N −1 h f h is the numerical 

solution. Unfortunately, each stage of the mathematical modelling is a very complex problem which 

has not yet been solved robustly. The most time consuming step in execution is the numerical 

solution of (non-)linear discrete Equation (3). Some remarks need to be added to the concept of 

black-box solver. Previously, an algorithm for solving a system of linear algebraic equations was 

called black-box solver if it required only the matrix formulation of problem Ax = b, i.e., the 

coefficient matrix A, the right-hand side vector b, and a starting guess x (0) to the solution A −1b [2]. 

A similar approach is applicable to solving the linear problems or to solving globally linearized 

nonlinear problems without any geometric input [3]. Monolithic methods applied to the entire system 

in a coupled manner demonstrate robust convergence for the saddle point problems and multiphysics 

simulation [4,5]. The most elegant conservative approach to construct the monolithic algorithm is 

finite volumecoupled ordering of unknowns, i.e., with usage of geometric data on computational 

grid. It is clear that efficient monolithic method is too difficult to construct for solving systems of 

strongly coupled nonlinear PDEs using only local linearization. We define software as black-box if it 

does not require any additional input from the user apart from a specification of the physical problem 

consisting of the domain geometry, boundary and initial conditions, source terms, the enumeration of 

the equations to be solved (heat conductivity equation, Navier–Stokes equations, Maxwell equations, 

etc.), and mediums. The user does not need to know anything about numerical methods or 

highperformance and parallel computing [6]. The idea behind robust algorithms is to choose the 

components independently of a given problem to match large a class of problems as possible [7]. The 

robust approach is often used in software packages where attaining the highest efficiency for a single 

problem is not so important [3,8].  

In fact, we have the numerous mathematical models of various physical and chemical processes for 

multiphysics simulation in real-life problems, the numerous methods for generating adaptive 

unstructured or (block-)structured grids [9], numerous methods for approximating the nonlinear 

(initial-)boundary value problems on these grids, the orderings of unknowns and the numerous 

iterative methods for parallel segregated/coupled solution of globally/locally linearized discrete 

analogues of these nonlinear (initial-)boundary value problems. If it possible to develop «one parallel 

solver for all problems», then this solver can be putted into black-box software for parallel handling 

a wide class of real-life problems. It should be emphasized that the execution time critically depends 

on the computational algorithm used to solve the real-life problems in parallel. 

The development of classical solvers can be regarded as the attempts to improve either robustness or 

convergence rate, or efficiency of parallel algorithm [3]. In our view, the development of black-box 

solver can be regarded as the attempt to simultaneously improve robustness, convergence rate, and 

efficiency of parallel algorithm, despite mutual exclusive nature of these requirements. 

This paper will focus on mathematical background of the black-box solver development. First, it is 

necessary to formulate the problem of constructing black-box solver. Next, a two-grid algorithm 

consisting of the original and auxiliary grids for solving nonlinear (initial-) boundary value problems 

will be presented. Then Robust Multigrid Technique (RMT) for solving the nonlinear (initial-) 

boundary value problems on the auxiliary grid will be presented. The goal of the paper is to develop 

a black-box computational approach for parallel solution of a wide class of applied problems starting 

with the Poisson equation up to systems of nonlinear strongly coupled partial differential equations 

(multiphysics simulation) in domains with complex geometry, which we already know how to solve. 

The main difficulty is that this algorithm must satisfy three mutually exclusive requirements 

(robustness, efficiency, and parallelism). 
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Modern software (Fluent, Star-CCM+, COMSOL’s CFD Module, Altair’s AcuSolve, and others) use 

general building blocks, which helps users to develop their own software for particular applications 

without having to start from scratch. The efficiency of users algorithm assembled from these building 

blocks is difficult to estimate, finding their optimal forms can impose challenges for many 

applications. The attempts are made to optimize the iterative algorithms using neural networks 

[10,11]. For example, the transfer operators are crucial for fast convergence of multigrid methods, 

but they are unknown in advance. To find them original approach based on a reformulation of the 

two-grid method in terms of a deep neural network with a specific architecture has been proposed 

and developed [12]. A more attractive approach is to minimize the number of problemdependent 

components, i.e., to develop Robust Multigrid Technique with the problemindependent transfer 

operators (Section 4). This one of reasons for indicating the practical significance of the work . 

The article is structured as follows: In Section 1, we briefly introduce main problems caused by 

further development of black-box software for scientific and technical computations. Section 2 

describes general requirements on black-box solver such as robustness, complexity, and parallelism. 

Section 3 introduces two-grid algorithm with auxiliary structured grid for simplifying coupled 

solution of nonlinear (initial-)boundary value problems. Section 4 represents Robust Multigrid 

Technique used on the auxiliary grid. Discussion on the multigrid methods is given in Section 5. 

Section 6 summarizes advantages of the two-grid algorithm. 

 

2. General Requirements on Black-Box Solver 

In order to clarify our understanding of black-box solver, we want to briefly discuss different 

computational aspects of real-life problems and to point out those problem features which we regard 

as the most significant ones: 

(1) Generation and adaptive refinement of the computational grids in complex domains. 

Unstructured automatic mesh generation is much easier than the generation of (block-)structured 

grids for very complicated domains, but the construction of efficient solver is much easier for 

structured grids [13,14]. Adaptivity and parallelism are numerically important principles, which, 

however, partly conflict with each other [3].  

(2) Multiphysics simulation. Multiphysics simulation involves the numerical analysis of multiple, 

simultaneous physical and chemical phenomena (such as heat transfer, fluid flow, deformation, 

electromagnetics, acoustics, mass transport, and others). The systems of nonlinear partial differential 

equations describing the phenomena can be solved in (de-)coupled manner. The coupled and 

decoupled iterations show a certain difference in the computational work, which is not known in 

advance but detected during the iterative solution process. 

(3) Stationary or non-stationary solution. The initial-boundary value problems for the time-dependent 

PDEs of engineering physics and the efficient algorithms for their numerical solution are of 

considerable scientific and practical interest [15]. The following are reasons for this:  

(a) Some physical processes (for example, turbulence) are purely non-stationary 3D phenomena; 

 (b) The initial-boundary value problems are particularly useful if the solution shows an unsteady 

behaviour which is not known in advance. A steady-state solution can be obtained through pseudo-

time marching. Using semi-implicit or fully implicit discretizations, large and adaptable time steps 

can be used, and parallel processing across space and/or time is feasible;  

(c) The systems of strongly coupled nonlinear PDEs are used for multiphysics simulation in real-life 

problems. In this case, the time step can be used as an underrelaxation factor for convergence control 

of the nonlinear iterations. 

Therefore, a time-dependent formulation of PDEs is more preferable for black-box implementation. 

The computational algorithm must be efficient for different grid aspect ratio in time and in space. 

What properties should the true black-box algorithm have? From our point of view, the most 

significant properties are: robustness, optimal computational work. Remember that here the number 

of problem-dependent component defines the robustness of algorithms: an algorithm is called robust 

if it has the least number of problem-dependent components among algorithms of the same class and 
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optimal computational work is the opportunity to solve many problems to within truncation error at a 

cost of CN arithmetic operations, where N is the number of unknowns. The development of black-

box solvers for multidisciplinary applications based on the solution of the “robustness–efficiency– 

parallelism” problem is a new challenge for scientific computing. Unfortunately, the true black-box 

solver cannot be constructed because the above requirements are mutually exclusive. Therefore, it is 

necessary to soften the “robustness–efficiency–parallelism” requirements in order to construct a 

close-to-black-box solver. Algorithmic complexity (W) is a way of comparing the efficiency of 

computational algorithms. Complexity can be measured in terms of the number of arithmetic 

operations that it takes for the algorithm to solve the given problem. We start our discussion with 

linear PDEs since the analysis is particularly easy and illustrative: let N be a linear elliptic operator 

in (1) (for example, N is a Laplace operator) and the domain Ω be d-dimensional unit cube (d = 2, 3). 

A uniform computational grid G is generated by dividing each edge of the cube Ω into n 

subintervals. In the following, n and h = 1/n denote the discretization parameter and mesh size, 

respectively. Some approximation of the problem (1) on the grid G results in the discrete analogue 

(2). Using some ordering of unknowns, the linear discrete problem (2) can be rewritten in the matrix 

form 

where A is a coefficient matrix, u is a vector of 

unknowns, and b is a right-hand side vector. General linear iterations for solving the system (4) can 

be represented in the form 

 
where the splitting matrix W defines a basic linear iterative algorithm 

 
where I is the unity matrix, and s is the iteration counter. In the following, we will assume that the 

system (4) has an unique solution u = A −1b and iterations (5) converge to this solution: u (s) → u = 

A −1b for s → +∞. The basic linear algorithm (5) for iterative solving (4) has three problem-

dependent components: the ordering of unknowns, the splitting matrix W and a stopping criterion for 

these iterations. For estimating the algorithmic complexity, we assume that a block ordering of the 

unknowns is used, i.e., the number of unknowns becomes 

 
where nb is the number of blocks, Nb is the number of unknowns forming each block, N = n d , d = 

2, 3 is the number of unknowns, and n is the discretization parameter (h = 1/n). The computational 

cost of each Vanka-type iteration (block Gauss–Seidel method used for the coupled numerical 

solution of systems of PDEs including the saddle-point problems [16,17]) is 

 
arithmetic operations (ao), where C is some constant. The number of iterations (5) can be estimated 

as 

 
where the parameter κ depends on the condition number of the coefficient matrix A and the block 

size Nb , d = 2, 3. Then the algorithmic complexity of the block iterative method becomes 

 
Use of the uniform grid in the above-mentioned linear analysis makes it possible to obtain the 

expression (6) for estimating the computational work. If nb = 1, then the block iteration coincides 

with the Gaussian elimination 

 
i.e., the complexity W is κ-independent and 
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The Gaussian elimination with partial/complete pivoting is implemented without the problem-

dependent components, but large complexity (W = O(N3 ) ao) allows this direct method to be used 

for solving small systems of linear algebraic Equations (SLAEs). The point ordering of an unknown 

corresponds to nb = N. In this case, the algorithmic complexity becomes 

 
It is expected that the point iterative method (5) will be faster than the Gaussian elimination for 

sufficiently large N, i.e., 0 ≤ κ < 2d. The parameter κ depends on the coefficient matrix A: κ → 0 for 

well-conditioned problems and the point iterative method has almost optimal algorithmic complexity 

 
As a rule, it is not useful to accelerate a highly efficient solver. The extra effort does not pay off.  

Thus, the simplest problem of constructing a robust iterative algorithm for numerical solving linear 

(initial-)boundary value problems on a uniform grid can be formulated as follows:  

(1) If A in (4) is a well-conditioned coefficient matrix (κ → 0), then the robust iterative algorithm 

must coincide with the basic linear algorithm (5);  

(2) If A in (4) is an ill-conditioned coefficient matrix (0 < κ < 2d), then it is necessary to add the 

lowest number of problem-dependent components to the basic linear algorithm (5) to: 

(a) Reduce the algorithmic complexity (6) down to a close-to-optimal value 

 
in sequential implementation;  

(b) Ensure that a parallel algorithm should be faster than the fastest sequential solver. The above 

considerations imply that it is necessary to coupled consider the two requirements of close-to-

optimal complexity (7) and parallelism. For the given purpose, the execution time of a parallel close-

to-black-box algorithm should be compared with the execution time of the fastest (optimal) 

sequential algorithm. Let 

 
be the algorithmic complexity of optimal solver and 

 
be the algorithmic complexity of fully parallel close-to-black-box solver (7). Here, p is the number of 

independent computing units in parallel implementation and Co and Cp are some constant. Assuming 

that the execution time is proportional to the complexity in the algorithm considered (T ∼ W), we 

have 

 
where S is the speed-up of the parallel solver over the optimal one, To is the execution time of the 

sequential optimal algorithm, and Tp is the execution time of the parallel close-toblack-box 

algorithm, N and p are the number of unknowns and independent computing units, respectively. If 

Co ≈ Cp then 

 
From the above results and considerations, one can conclude that parallel implementation of the 

close-to-black-box algorithm (7) will not lead to impressive reduction in the execution time as 

compared with the optimal sequential one (8) with N large. Constructing the iterative algorithm for 

numerically solving nonlinear (initial-boundary value problems remains the same:  

(1) If the sequential Newton-type iterations converge slowly, then convergence should be accelerated 

up to close-to-optimal value (7) using the least number of extra problemdependent components; 

 (2) The parallel nonlinear algorithm should be faster than the fastest sequential one.  
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In general, development of the robust algorithm is more difficult than that of solving linear problems 

on a uniform grid. We summarize these considerations as follows:  

(1) As a rule, systems of nonlinear strongly coupled PDEs in complex domains (multiphysics 

simulation) are needed to solve in a (de)coupled manner for industrial applications, so theoretical 

analysis of algorithmic complexity such as (6) becomes more difficult;  

(2) Simplicity of Gauss–Seidel iterations makes this algorithm attractive for smoothing in low-

memory sequential or parallel multigrid. For real-life applications, it is far from trivial to choose 

optimal robust algorithm components uniformly for a large class of problems. In many cases, the 

Krylov subspace methods may have advantages. Therefore, each iterative algorithm for the 

numerical solution of nonlinear (initial-)boundary value problems has at least three problem-

dependent components: the ordering of unknowns, (de)coupled iterations for a locally/globally 

linearised discrete problems and a stopping criterion for this iterative process. As a result, a black-

box solver requires black-box optimization (i.e., the optimal choice of the problem-dependent 

components of the robust algorithm for the given problem without user control).  

The question remains: Is it possible to construct a close-to-optimal black-box solver (the least 

number of problem-dependent components, close-to-optimal complexity (7), the parallel algorithm 

should be faster than the fastest sequential one) instead of the true black-box one (absence of the 

problem-dependent components, optimal complexity (8), and full parallelism)? Yes! First, a general 

computational approach for combining the advantages of unstructured and structured grids (two-grid 

algorithm) will be presented. Second, a robust method for solving the discrete initial-boundary value 

problems on the auxiliary structured grid will be analysed. 

 

3. Two-Grid Algorithm  

Close-to-black-box solver can be constructed by combining the advantages of unstructured and 

structured grids: simplicity of automatic generation in complex domain geometry and opportunity to 

solve nonlinear (initial-)boundary value problems by very efficient geometric multigrid methods in 

parallel (de-)coupled manner. The Auxiliary Space Method is a (non-)nested two-level 

preconditioning technique based on a simple relaxation scheme (smoother) and an auxiliary space 

(here a structured grid is the auxiliary space). The basic idea of the Auxiliary Space Method is to use 

an auxiliary (non-)linear problem in the auxiliary space, where it is simpler to solve [18,19]. The 

solution of auxiliary problem (auxiliary grid correction) is then transferred back to the original space. 

The mismatch between auxiliary space and the original space is corrected by a few smoothing 

iterations. For reason of simplicity, we consider a linear boundary value problem 

 
on domain Ω ∈ Rd , together with a set of appropriate boundary conditions 

 
at the domain boundary ∂Ω. Here, L is a linear elliptic operators, f is a known functions and u is the 

desired solution. Let uˆ be an approximation to the solution u and c = u − uˆ is a correction, i.e., 

difference between the solution and the approximation to it. The representation of the solution 

 
is called Σ-modification of the solution [15,20]. Substitution of (10) into (9) leads to Σmodified form 

of this problem 

 
Σ-modification can be used for solving some nonlinear problems (for example, the Navier– Stokes 

equations), but Π-modification u = uˆ · c can be preferable for another nonlinear problems. The 

general approach for solving the nonlinear problems solution is Full Approximation Storage scheme 

[3].  
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Let an original (un-)structured grid Go and an auxiliary structured grids Ga be generated in the 

domain Ω. Figures 1 and 2 represents example of such computational grids. Approximation of (11) 

on these grids Go and Ga leads to the discrete problems written in the matrix form (with the 

eliminated boundary conditions): 

 
It should be emphasized that the problem (11) is discretized on these grids Go and Ga independently. 

So, the systems (12) and (13) are independent from each other. It simplifies the coupled iterative 

solution of systems of PDEs. For interface between (12) and (13), a restriction operator Ro→a 

transferring the residual f h o − Ao ˆu h o from the grid Go onto the grid Ga 

 
and a prolongation operator Pa→o transferring the correction c h a from the grid Ga onto the grid G 

 
should be defined. Figure 3 demonstrates an example of the transfer operators Ro→a and Pa→o . 

Using (14) and (15), the correction c h o can be computed as 

 

 
Figure 1. Example of the original (un-)structured grid Go 

 
Figure 2. Example of the auxiliary structured grids Ga 

Figure 4 represent the linear two-grid algorithm 

1. Transfer of the residual f h o − Ao ˆu (q) o to the auxiliary grid Ga , where q is a counter of 

the intergrid iteration 

2. 2. Solution of the auxiliary system by some numerical method 

 
3. Prolongation of the correction ca to the original grid G 

 
where Pa→o is a prolongation operator transferring the correction to Go ;  

4. Computation of the starting guess for the smoothing iterations on G 

 
5. Smoothing iterations on the original grid G 
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where s is the smoothing iteration counter;  

6. Updating the approximation to the solution 

 
where q is the intergrid iteration counter;  

7. check convergence, repeat if necessary 

 
 

 
Figure 4. Linear two-grid algorithm 

The linear two-grid algorithm can be rewritten in the matrix form 

 
where the iteration matrix of the linear two-grid algorithm is 

 
and So = I − W−1 o Ao is a smoothing iteration matrix and ν is the smoothing iterations counter 

(kSok < 1).  

The convergence properties of the linear two-grid algorithm can be easily analysed by considering 

factor ρq of the averaged reduction in the residual r (q) o = f h o − Ao ˆu (q) 

 
which shows the averaged reduction in the residual over q integrid iterations [21]. The classical 

multigrid theory is based on the approximation and smoothing property as introduced by W. 

Hackbusch [22]:  

1. Smoothing property: a monotonically decreasing function η(ν) : R+ → R+ exist such that 

η(ν) → 0 for ν → ∞ an 

 

 
2. Approximation property: there exists a constant CA > 0 such that 

 
The smoothing property states, in principle, that the smoother reduces the highfrequency components 

of the error (without amplifying the low-frequency components). The approximation property 

requires the coarse grid correction to be reasonable [22]. The basis of this theory is a splitting 

(factorization) of the two-grid iteration matrix M (17). 
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Theorem 1.  

Assuming that the smoothing property (19) and approximation property (20) hold, then the N-

independent convergence of the intergrid iterations (16) follows immediately for ν that is large 

enough. 

 Proof of Theorem 1. The intergrid iterations (16) can be rewritten as 

 
This leads to the following estimation 

 
The splitting of the two-grid iteration matrix M (17), the smoothing property (19), and approximation 

property (20) lead to the estimation 

 
Since η(ν) is the monotonically decreasing function, it should be noted that 

 
r a sufficiently large v. 

This theorem predicts that the number of intergrid iterations of the two-grid algorithm does not 

depend on the number of unknowns N, i.e., ρq 6= ρq (N) (18). The main features of the two-grid 

algorithm can be summarized as follows:  

(1) The number of extra problem-dependent components as compared with the basic algorithm (5) 

are:  

(a) A non-nested case: let Go and Ga be the unstructured and structured grid, respectively. The two-

grid algorithm has two extra problem-dependent components: transfer operators Ro→a and Pa→o 

(Figure 3);  

(b) A nested case: let Go and Ga be the block-structured grids [9]. In this case, we suppose Ga = Go 

⇒ Ro→a = Pa→o = I in absence of smoothing on the original grid (So = I) and the two-grid 

algorithm has extra problem-dependent components (interblock interpolation); 

 (c) A nested case: let Go and Ga be the structured grids. In this case, we suppose Ga = Go ⇒ Ro→a 

= Pa→o = I in absence of smoothing on the original grid (So = I) and the two-grid algorithm has no 

extra problem-dependent components.  

(2) The nonlinear two-grid algorithm based on Full Approximation Scheme approach is given in 

[15].  

(3) The nonlinear two-grid algorithm offers a general possibility to employ low order schemes and 

obtain high order accuracy (the high order defect correction iteration [3]). Remember that 

mathematical modelling in continuum mechanics is a chain of approximations: (a) The difference 

schemes approximate the governing differential Equation (1). (A difference scheme is a finite system 

of algebraic equations replacing some differential problem);  

(b) The differential Equation (1) approximate the fundamental conservation laws of continuum 

mechanics. (In fact, the hypothesis of continuity prohibits the limit leading to the differential 

equations);  

(c) A continuous medium approximates a real one. Since any chemical reaction is the result of 

intermolecular interactions, modelling chemical processes in continuum mechanics is only possible 

by using empirical hypotheses and experimental data to approximate the quantum nature of these 

intermolecular interactions. 

As a rule, the mathematical description errors of physical and chemical processes in real-life 

problems has a physical nature (inaccurate the initial and\or the boundary conditions, equation state 

errors, approximate description of the turbulent transport and the chemical reactions, etc.) and they 

exceed the discretization errors of the governing (integro-)differential Equations [23]. In many cases, 

the second-order accurate finite volume discretization does not damage the discrete solution accuracy 

of the mathematical model equations required for practical applications. However, advanced 
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software can use the high-order discretization without significant changes in the computational 

algorithm. For reasons of robustness, the finite volume method of the second order discretization will 

be used on the auxiliary grid Ga , but high order discretization approaches can be used on the 

original grid Go . 

(4) The basic ingredients of the two-grid algorithm are computation of correction ca on the auxiliary 

grid Ga and smoothing iterations on the original grid Ga . The most timeconsuming component of 

the solver is numerical inversion of the coefficient matrix Aa , i.e., the matrix A −1 a in (17).  

(5) The differential problem is approximated on the grids Go and Ga separately in order to simplify 

coupled iterative solution of systems of PDEs on the auxiliary structured grid Ga (for example, the 

Vanka-type iterations or the volume-coupled approach used in monolithic algebraic multigrid 

methods [5]). 

The two-grid algorithm puts more computational work on the auxiliary (structured) grid Ga , where 

the (non-)linear problems are simpler to solve and parallelize. The final effort is the construction of 

an efficient iterative algorithm for solving the (non-)linear (initial-)boundary value problems on the 

auxiliary grid Ga . 

 

3. Robust Multigrid Technique  

An epochal event in world computational mathematics was publication of R.P. Fedorenko’s paper 

(Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, 

USSR/Russia) in 1961 [24], where the author formulated a new iterative method for solving discrete 

boundary value problems (BVPs) on structured grids (https://team.kiam.ru/botchev/fedorenko/, 

accessed on 1 August 2023). Thoughtful conclusions on the basis of elementary analysis were far 

ahead of their time, and after many years this paper was called the “first true multigrid publication” 

in the scientific literature. The first theoretical results were reported in the pioneering papers of N.S. 

Bakhvalov and G.P. Astrakhantsev. At the end of the 1970s and at the beginning of the 1980s 

research on the multigrid methods increased. Very interesting multigrid approaches were proposed 

and developed in the Theoretical Division of the Los Alamos National Laboratory, USA. In papers 

[25,26], P.O. Frederickson and O.A. McBryan studied the efficiency of the Parallel Superconvergent 

Multigrid Method (PSMG). The basic idea behind the PSMG is the observation that for each fine 

grid there are two natural coarse grids—the even and odd points of the fine grid (Figure 5). The 

authors tried to develop a optimized multigrid algorithm by combining these coarse grid solutions for 

more accurate correction. 

 
Although P.O. Frederickson and O.A. McBryan restrict themselves to a theoretical analysis of the 

PSMG, they demonstrate that besides numerical efficiency, the algorithm is also highly parallel. The 

PSMG and related ideas essentially refer to massively parallel computing. However, combinations or 

the extrapolation of the coarse grid corrections is a very efficient approach only for the simplest 

BVPs. Also in 1990, a similar multiple coarse grid correction strategy had been proposed for the 

development of a robust multigrid method for black-box software in Baranov Central Institute of 

Aviation Motors, Moscow, USSR/Russia. A developed solver is called Robust Multigrid Technique 

(RMT). The RMT uses a multiple coarsening strategy coupled with the finite volume discretization 

in order to obtain the problem-independent transfer operators and coarse grid operator (i.e., the 

matrix Aa in (13)), high parallel efficiency, and to make the smoother’s task the least demanding. 

The history of RMT is given in [20], and for the theoretical description of RMT and corresponding 

parallel analysis, we refer interested readers to [6,15,20,27]. 

The uniform finest grid G 0 1 consists of two sets of points G v (0;1) and G f (0;1): 
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where the discretization parameter n 0 1 defines the finest grid G 0 1 . Figure 6 represents the finest 

uniform grid G 0 1 = G v (0;1) ∪ G f (0;1) generated with n 0 1 = 8 or mesh size h = 1/8 in the unit 

segment: x v 1 = 0, x v 9 = 1. 

 
Each d-dimensional computational grid used in RMT can be represented as product of d one-

dimensional grids, so the one-dimensional grid G 0 1 = G v (0;1) ∪ G f (0;1) will be considered in 

detail. Figure 7 represents triple coarsening of RMT. This triple coarsening is independent of the 

assignment of grid functions to points x v i (x v i are the vertices, x f i are the finite volume faces) or 

to points x f i (x f i are the vertices, x v i are the finite volume faces). This triple coarsening, which 

does not depend on the configuration of finite volumes, gives a straightforward generalization to 

multidimensional (un-)staggered discretization of the (initial-)boundary value problems. Later, the 

triple coarsening was proposed in the Theoretical Division of the Los Alamos National Laboratory 

[28].  

PSMG and RMT are the single-grid algorithms based on the essential multigrid principle of 

iterations with a basic iterative method on the fine grid [21], but representation of these single-grid 

algorithms as the multigrid solvers allows analyse their convergence and complexity by elementary 

methods. The essential multigrid principle is to approximate the smooth (long wavelength) part of 

the error on coarser grids. The non-smooth or rough part is reduced with a small number 

(independent of mesh size) h. 

 
Figure 7 illustrates the main properties of the coarse grids of RMT: Property 1: all coarse grids G 1 1 

, G 1 2 and G 1 3 have no common grid points: 

 
It result in the massive parallelization of computations. Property 2: the fine grid G 0 1 is represented 

as a union of the coarse grids G 1 1 , G 1 2 and G 1 3 : 

 
It result in the problem-independent prolongation operator P. Property 3: all grids are geometrically 

similar, but the mesh size of the coarse grids G 1 1 , G 1 2 and G 1 3 is three times larger than the 

mesh size of the finest grid G 0 1 . It result in the unified finite volume discretization of the modified 

(initial-)boundary value problems on the multigrid structures, i.e., to the problem-independent 

construction of the coarse grid operator Aa in (17). Property 4: independent of the grid functions 

assignment, each finite volume on the coarse grids G 1 1 , G 1 2 and G 1 3 is a union of three finite 

volumes on the fine grid G 0 1 . It result in the problem-independent restriction operator R based on 

the additive interval property to evaluate integrals in the finite volume discretization.  
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The finest grid G 0 1 forms zero grid level, but the coarse grids G 1 1 , G 1 2 and G 1 3 form the first 

grid level. The following coarsening is carried out recursively: each computational grid G l i , i = 1, . 

. . , 3l of level l is considered to be the finest grid for three coarse grids of level l + 1. Nine coarser 

grids obtained from three coarse grids of the first level form a second level as shown in Figure 8. The 

coarsening stops when the coarse grids will have a few points x v and x f , and further coarsening 

cannot be performed. The coarsest level will be denoted by L + 3 . The total number of levels (coarse 

levels L + 3 and the finest grid (zero level)) is L + 3 + 1. The grid hierarchy G l m, m = 1, . . . , 3l , l 

= 0, . . . , L + 3 will be called a multigrid structure (MS) generated by the grid G 0 1  

 
Here the coarse grids are used the only for obviousness of the technique description, since RMT is a 

single-grid algorithm, the index mapping gives the multigrid illusion [6,15,20,27]. 

 
Figure 9 represents the finest grid G 0 1 (n 0 1 = 30, h = 1/n 0 1 = 1/30) and the coarse grids of the 

first and second levels. The number of coarse levels L + 3 + 1 can be computed before the generation 

of a multigrid structure. Assume that many of the coarsest grids of level L + 3 have three points x v 

or x f . Then the number of points on the finest grid G 0 1 is n 0 1 + 1 ≈ 3 L + 3 +1 or 

 
where the square brackets indicate an integer part. The procedure of the fast approximation of 

integrals on the multigrid structures uses the ghost points of each grid [20,27].  

The multigrid schedule of RMT is the V-cycle with no pre-smoothing (the so-called sawtooth cycle 

[21]). The sawtooth cycle is a special case of the V-cycle, in which smoothing before the coarse grid 

correction (pre-smoothing) is deleted. The computational cost of each multigrid iteration of RMT can 

be estimated as 

 
where W0 = CN ao is cost of the finest grid smoothing, N is the number of unknowns, C is some 

constant, and L + 3 + 1 is the number of levels. Since 

 
(21) and all grids of the some level have the same number of points, the algorithmic complexity of 

RMT can be estimated as 

 
i.e., RMT has the required close-to-optimal algorithmic complexity (7). Theoretical analysis predicts 

that the single-grid RMT has the most attractive property of classic multigrid methods, namely h-

independent convergence in general situations [6,15,20,27]. 
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We summarize some well-known facts about sequential RMT here:  

(1) RMT is a single-grid algorithm having close-to-optimal algorithmic complexity and h-

independent convergence;  

(2) RMT uses a multiple coarsening strategy coupled with the finite volume discretization in order to 

obtain the problem-independent transfer operators and coarse grid operator, high parallel efficiency, 

and to make the smoother’s task the least demanding. The history of RMT is given in [6], for the 

theoretical description of RMT and corresponding examples and parallel analysis, we refer to 

[6,15,20,27]; 

(3) RMT has extra problem-dependent component (the number of smoothing iterations on the coarse 

levels); 

 (4) All problem-dependent components of RMT can be optimized on the multigrid structure in the 

black-box manner. The basic idea of black-box optimization is the experimental study of the iteration 

convergence rate on a multigrid structure starting from the same initial guess. For example, a discrete 

problem can be solved using different problem-dependent components on several grids of the same 

level starting from the same initial guess. Analysis of reduction in the residual norm during the 

smoothing iterations makes it possible to choose close-to-optimal problem-dependent components of 

the algorithm. Figure 9 illustrates that the similarity of all grids of the same level leads to almost the 

same problem-dependent components of the algorithm at this level. It should be emphasized that this 

black-box optimization does not require any theoretical input or a priori information on problem to 

be solved. The extra effort for this black-box optimization is negligible compared to the effort for 

smoothing 

Finally, analysis of the parallel RMT completes analysis of the two-grid algorithm. Assuming that the 

finest grid is deleted, we can solve the discrete problems on 3 d , d = 2, 3 independent coarse grids of 

the first level. This geometric parallelism of RMT is based on non-overlapping the finest grid 

partition for distribution of 3 d , d = 2, 3 independent tasks over p = 3 κ , κ = 1, 2, . . . , d computing 

units. In the following, the coarse grids, which are considered the finest grids in the solution process, 

will be called dynamic finest grids. The difference between this starting guess and the finest grid 

numerical solution does not exceed ` significant digits for the second order finite volume 

discretization, where ` is the serial number of the dynamic level.  

To illustrate the parallel RMT, we consider the following example: 

 
in the unit cube Ω = (0, 1) 3 . If the exact solution is given by 

 
then substitution of (23) into (22) gives the right-hand side function 
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and the Dirichlet boundary conditions. Standard seven-point finite volume discretization of (22) on 

the uniform grid G 0 1 is abbreviated as 

 
where ∆ h , u h , and f h are the discrete analogues of the Laplace operator, the solution u, and the 

right-hand side function f , respectively.  

This boundary value problem is solved by RMT with (hx = hy = hz = 1/100) using the stopping 

criterion 

 
The error of the numerical solution is defined by comparison of the exact and approximated solutions 

 
where ua and u h are the exact (23) and the numerical solutions, respectively. Figure 10 represents 

the error of the numerical solutions kek∞ obtained on the multigrid structures MS(G 0 1 ) and MS(G 

1 k ), k = 1, . . . , 3d starting with the iterant zero on 101 × 101 × 101 uniform finest grid G 0 1 (n 0 1 

= 100, h = 1/100). Taking into account the stop-ping criterion, the iterative solution of the model 

BVP on the finest grid G 0 1 is a reduction in the error of the zero starting guess (ke (0)k∞ ≈ e 3 ≈ 

20) down to kek∞ ≈ 10−6 . Figure 10 illustrates the accuracy of the starting guess to the finest grid 

solution assembled from the solutions obtained in parallel on the coarse grids of the first level 

(dynamic finest grids). This geometric parallelism does not require parallelization of the 

iterative/direct solvers. 

 
Figure 10. Error of the numerical solutions obtained on the multigrid structures MS(G 0 1 ) and 

MS(G 1 k ), k = 1, . . . , 27. 

The algebraic parallelism of RMT is based on the multicolour orderings of unknowns (or block of 

unknowns) to parallelize the smoothing iterations on the finer levels where the number of grids is 

less than the number of computing units. The small-scale granular algebraic parallelism is grid-

independent. The solution of the modified boundary value problem starts on the auxiliary grid. 3 d 

multigrid structures generated by the dynamic grids of the first level makes it possible to obtain 

accurate approximation to the solution in parallel by handling 3 d independent discrete problems. In 

addition to black-box optimization of the problem-dependent components, the dynamic grid 

refinements are carried out during the solution process on the multigrid structures generated by the 

dynamic grids, controlled by some appropriate adaptation criteria. Figure 11 demonstrates an 

example of the adaptive grid refinement. Stopping of iterative computation of the auxiliary grid 

correction on the finest grid means that the sufficiently accurate approximation to the solution on the 

original grid obtained and subdomains for the grid refinement are determined. The next step is 

generation of an original (un)structured grid taking into account the subdomains for the auxiliary grid 

refinement. The auxiliary grid correction is prolonged to the original grid and it is corrected by a few 

smoothing iterations. The iterative process is continued with restriction of residual to the auxiliary 
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grid if the required accuracy is not yet achieved. Otherwise, the two-grid algorithm stops. 

Subsequent intergrid iterations are performed without dynamic grids, the black-box optimization and 

the auxiliary grid refinement. The initial-boundary value problems are solved in the same parallel 

manner: parallel in space as that for the boundary value problems and parallel in time (waveform 

relaxation) [15,29,30].  

Theoretically, the execution time of the parallel RMT implemented over nine computing units is 

approximately equal to the execution time of the sequential V-cycle [15]. 

 
 

4. Discussion  

In our opinion, black-box algorithm for solving the real-life problems should be based on the 

following principles:  

(1) Dominance of physical errors. In many cases, the second-order accurate finite volume 

discretization does not damage the discrete solution accuracy of the real-life problems, but advanced 

software can use the high-order discretization without significant changes in the algorithm [31].  

(2) Formalization of computations. The black-box algorithm is intended to solve the nonlinear initial-

boundary value problems in unified manner, which we already know how to solve. In other words, 

the black-box algorithm is development of wellknown methods for solving well-known problems, 

but not a new method for solving new problems.  

(3) Requirements on robustness, efficiency and parallelism. The triad of requirements on robustness, 

efficiency, and parallelism defines black-box algorithm. Attempts to satisfy one requirement without 

considering the others is a waste of time. 

 (4) (De)coupled solution of the most difficult problem. The strongly coupled systems of nonlinear 

partial (integro-)differential equations (for example, steady Navier– Stokes equations) are the most 

difficult problem for black-box algorithm. This solver must solve such systems not only in 

segregated manner, but also in coupled one on (un)structured grids. 

It is clear that true black-box solver (all problem-independent components, optimal convergence rate, 

full parallelism) cannot be constructed, but the above mentioned two-grid algorithm (the least 

number of problem-dependent components, close-to-optimal convergence rate, high unified 

parallelism in RMT-based two-grid approach for (initial-)boundary value problems) is good 

approximation to desired solver for black-box software. From a scientific point of view, it is 

interesting to construct other computational techniques for solving a large class of nonlinear (initial-

)boundary value problems in (de)coupled manner comparable in robustness, efficiency and 

parallelism with the two-grid algorithm 

 

5. Conclusions  

We summarize advantages of the two-grid algorithm: The two-grid algorithm satisfies to above 

mentioned conditions for black-box solvers:  

(a) Robustness (the lowest number of problem-dependent components);  

(b) Efficiency (close-to-optimal algorithmic complexity);  

(c) Parallelism (a parallel robust algorithm should be faster than the fastest sequential one). The 

number of extra problem-dependent components as compared with the basic algorithm (5) are: 
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 (a) A non-nested case: let Go and Ga be the unstructured and structured grid, respectively. The two-

grid algorithm has three extra problem-dependent components: transfer operators (Ro→a and Pa→o 

) and the number of smoothing iterations on the auxiliary grid;  

(b) A nested case: let Go and Ga be the block-structured grids. In this case, we suppose Ga = Go ⇒ 

Ro→a = Pa→o = I in absence of smoothing on the original grid (So = I) and the two-grid algorithm 

has two extra problem-dependent components (interblock interpolation) and the number of 

smoothing iterations on the auxiliary grid; 

 (c) A nested case: let Go and Ga be the structured grids. In this case, we suppose Ga = Go ⇒ Ro→a 

= Pa→o = I in absence of smoothing on the original grid (So = I) and the two-grid algorithm has 

extra problem-dependent components (the number of smoothing iterations on the auxiliary grid). 

The most elegant large-scale granular geometric parallelization of RMT can be achieved by 

distributing the 3 d independent discrete tasks over 3 d computing units. This parallelization is 

smoother-independent. The small-scale granular algebraic parallelism is used on the finer levels. 

This parallelization is grid-independent. Theoretical analysis predicts that the parallel RMT 

implemented over nine computing units is approximately equal to the sequential V-cycle in 

execution time. The initial-boundary value problems are solved in the same parallel manner as the 

boundary value problems, but including parallelism in time. The results of numerical experiments for 

the illustration of the robustness and the efficiency of RMT are given in [6,15]. The sequential and 

parallel software are presented in [20,27]. 
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